Hydrogen aircraft of the future: Technology, potential and performance

Tomas Grönstedt, professor turbomachinery tomas.gronstedt@chalmers.se

Major contributions also by: Carlos Xisto, Isak Jonsson and Christian Svensson

1. Can the flightpath 2050 targets be reached?

ChatGTP 4o generated image

ULTIMATE (EU project - 2015 - 2018)

Ultra Low emission Technology Innovations for Mid-century Aircraft Turbine Engines

+ quite optimistic technology insertion for aircraft !

P. Heinemann, P. Panagiotou, Patrick Vratny, S. Kaiser, M. Hornung and K. Yakinthos, "Advanced Tube and Wing Aircraft for Year 2050 Timeframe," in 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, USA, 2017

IC = Intercooled

PDC = Pulse detonation combustion

CCE = Composite Cycle Engine

ND = Nutating Disc

Can the targets be reached?

Probably not.

2. How far would the flightpath 2050 targets get us?

ChatGTP 4o generated image

Climate impact of targets

How far would they get us? Quite far actually!

Grewe, V., Gangoli Rao, A., Grönstedt, T. *et al.* Evaluating the climate impact of aviation emission scenarios towards the Paris agreement including COVID-19 effects. *Nat Commun* **12**, 3841 (2021). https://doi.org/10.1038/s41467-021-24091-y

Reachable - hardly Enough - almost

We need new fuels!

ChatGTP 4o generated image

Hydrogen can remove a large share of CO_2 emissions.

Emissions split (percentages above) from:

¹Graver, Brandon, Kevin Zhang, and Dan Rutherford. "emissions from commercial aviation, 2018." ICCT, 2019.

Rest of presentation will explore hydrogen aircraft:

1. Energy use vs range

2. Propulsion heat management

ChatGTP 4o generated image

Range – back of the envelope

- Energy need:
 - Breguet range for 777-200ER/GE90
 - Including added drag
 - Including added mass
- Now let's take a closer look at these aircraft

Shorter ranges

ChatGTP 4o generated image

....

000000

Air travel in the Nordic region

- State of the art fuel cell (PEM)
- Dynamic tank model
 - Optimization for design mission

Parameter	ATR 42-500	LH2 PEMFC
MTOW	18.600 kg	21.049 kg
MZFW	17.000 kg	20.573 kg
Wing loading	341 kg/m²	341 kg/m²
Fuselage length	22.7 m	26.5 m
Fuselage fineness ratio	7.68	8.98
Fuselage wetted area*	208.2 m ²	243.6 m ²
Wing reference area	54.5 m²	61.7 m²
Wing aspect ratio*	10.9	10.9
Wing-span	24.57 m	26.16 m
Wing taper ratio*	0.56	0.56
Flap configuration	Single-slotted	Single-slotted
Lift over drag	16.254	16.480
Energy use		Approx25% (FC benefit). +11% if FC efficiency benefit is not included

Svensson, C., Oliveira, A. A., & Grönstedt, T. (2024). Hydrogen fuel cell aircraft for the Nordic market. International Journal of Hydrogen Energy, 61, 650-663.

Return-without-refuel

- Close to 80% of theoretical range for a 12 hour onground scenario
- Heavier, well insulated tanks gives the most operational flexibility with a small loss in range
- We could operate whole Sweden with initially only three hydrogen hubs

Medium range

ChatGTP 4o generated image

Parameter	Jet A-1 MR 2050	LH2 MR 2050
Mach	0.78	0.78
Maximum Takeoff Weight (MTOW) (kg)	77100	78600
Operational Empty Weight (OEW) (kg)	41400	51300 (+23.9%)
Design range (NM/km)	3000 N M	/ 5556 km
Tank Volume (including insulation) (m³)	-	35.4/80.2
Tank Weight (kg) (Incl. Structure/Fairing)	-	6505
Gravimetric efficiency	-	49.1% (67.6)+
Mission fuel mass including reserves (kg)	14746	6280
Wing Loading (kg/m ²)	670	596
Wing Area (m²)	117	133
Block Energy Use (MJ/PAX/km)	0.490	0.579 <mark>(+18%)</mark>
FPR (cruise/toc)	1.41/1.49	1.43/1.52
OPR (cruise/toc)	43.8/52.5	42.6/50.4
BPR (cruise/toc)	16.64/15.03	18.5/17
SFC (mg/Ns) (cruise/toc)	12.6	4.41/4.42

⁺Excluding fairing mass

 Increased wing loading not possible due to higher OEW for hydrogen aircraft

Long range

Contraction

ChatGTP 4o generated image

Parameter	Jet A-1 LR 2050	LH2 LR 2050
Mach	0.85	0.85
Maximum Takeoff Weight (MTOW) (kg)	293700	284000
Operational Empty Weight (OEW) (kg)	152300	194300 (+27.6%)
Range (NM/km)	75	00/13890
Tank Volume (including insulation) (m ³)	-	714
Tank Weight (kg) (Incl. Structure/Fairing)	-	26524
Gravimetric efficiency	-	61.4% (72.5%)+
Mission fuel mass including reserves (kg)		42100
Wing Loading (kg/m ²)	735	601.5
Wing Area (m ²)	410	477
Span (m)	69	70.5
Block Energy Use (MJ/PAX/km)	0.641 MJ/PAX	0.797 MJ/Pax (<mark>+24%</mark>)
FPR (cruise/toc)	1.42/1.47	1.39/1.45
OPR (cruise/toc)	68.2/75.3	67.4/76.5
BPR	19.6/19.2	23.1/21.7
SFC (mg/Ns) (cruise/toc) ⁺ Excluding fairing mass	12.24/12.51	4.34/4.35

ENABLE H2

Xisto, Carlos, and Anders Lundbladh. "Design and performance of liquid hydrogen fueled aircraft for year 2050 EIS." 33rd Congress of the international council of the aeronautical sciences. 2022.

- All hydrogen aircraft ranges seem feasible
- Potentially large advantages for fuel cell aircraft if integration is successful

• Tank technology critical for longer ranges

 Synergy between advanced airframe designs and storage improves performance but is not necessary

Rompokos, P., Rot, A., Nalianda, D., Isikveren, A. T., Senné, C., Gronstedt, T., & Abedi, H. (2021). Synergistic technology combinations for future commercial aircraft using liquid hydrogen. *Journal of Engineering for Gas Turbines and Power*, 143(7), 071017.

$\overline{\langle}$	\sim		
Baseline – low wings, tanks above fuselage	1 – high wings, tanks above fuselage	2 – low wings, external tanks below wings	3 – high wings, external tanks below wings
×.			A
4 – Iow wings, external tanks above wings	5 – external tanks joining box wings	6 – conformal tanks either side of fuselage and below low wings	7 – conformal tanks either side of fuselage and well below high wings
	A		A
8 – Iow wings, tank inside aft fuselage	9 – high wings, tank inside aft fuselage	10 – low wings, tanks in forward and aft fuselage	11 – high wings, tanks in forward and aft fuselage
	A	\geq	
12 – Iow wings, tank in centre of fuselage	13 – high wings, tank in centre of fuselage	14 – Iow wings, tank aft of double-bubble fuselage	15 – high wings, tank aft of double-bubble fuselage
\rightarrow		\geq	
16 – Iow wings, tanks at forward and aft ends of double-bubble fuselage	17 – high wings, tanks at forward and aft ends of double-bubble fuselage	18 – Iow wings, tank(s) in centre of double-bubble fuselage	19 – high wings, tank(<u>s)</u> in centre of double-bubble fuselage
20 – low wings, tanks aft and above double- dark fuselane	21 - mid-height wings, tanks aft and above double.deck fuselage	22 – low wings, tank(s) in centre of double-deck fiselane	23 - mid-height wings, tank(s) in centre of double.deck fuselence
	double deck luserage	Reade	
24 – Iow wings, tanks at bottom of double-deck fuselage	25 – mid-height wings, tanks at bottom of double- bubble fuselage	26 – BWB with mid-height wings, internal under-floor tanks	27 – BWB with mid-height wings, int. under-floor and external under-wing tanks
×	the	Ŧ	
28 – Iow wings, double fuselages, tanks inside aft fuselages	29 – high wings, double fuselages, tanks inside aft fuselages	30 – high wings, double fuselages, external tank on centreline	

Heat management

ChatGTP 4o generated image

Heat-management potential LH2

- Cryogenic storage
 - -253 C
- Hydrogen is exceptional coolant
 - Using existing surfaces
 - High heat capacity
 - More compact HEX

Temperature	Pressure	Enthalpy
22 K	2.3 bar	17.84 kj/kg
700 K	40 bar	9793.5 kj/kg
1000 K	40 bar	14229 kg/kg

Patrao, Alexandre Capitao, et al. "Compact heat exchangers for hydrogenfueled aero engine intercooling and recuperation." *Applied Thermal Engineering* 243 (2024): 122538.

Short-Haul Flights May Be Fossil-Fuel-Free By 2045

Published Jul 19, 2024 at 10:21 AM EDT Updated Jul 26, 2024 at 11:35 AM EDT

https://www.newsweek.com/fossil-fuel-free-flights-hydrogenpower-air-travel-1924613

CHALMERS UNIVERSITY OF TECHNOLOGY