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1. Can the flightpath 2050 targets be
reached?
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Probably not.



2. How far would the flightpath 2050
targets get us?
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- - How far would they get us?
CI Imate Im paCt Quite far actually!
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Fig. 2 Near-surface temperature change of five scenarios including CO,
and non-CO,-effects.

Grewe, V., Gangoli Rao, A., Gronstedt, T. et al. Evaluating the climate impact of aviation emission scenarios

towards the Paris agreement including COVID-19 effects. Nat Commun 12, 3841 (2021).
https://doi.org/10.1038/s41467-021-24091-y



1. Reachable - hardly
2. Enough - almost

We need new fuels!




Hydrogen can remove a large share of
CO, emissions.
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Emissions split (percentages above) from:
1Graver, Brandon, Kevin Zhang, and Dan Rutherford. "emissions from commercial aviation, 2018." ICCT, 2019.



Rest of presentation will
explore hydrogen aircraft:

1. Energy use vs range

2. Propulsion heat management
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Range — back of the envelope

* Energy need:

* Breguet range for
777-200ER/GE90

* Including added drag
* Including added mass

* Now let’s take a closer
look at these aircraft

60

50 -

40

30

20 -

10

0_

-10 1

-20

Energy usage relative to kerosene in %

500 NM

5000 NM
= 7000 NM

3000 NM | |

Nominal kerosene level

0.3

0.4 0.5 0.6 0.7 0.8 0.9 1
Gravimetric tank efficiency




Shorter rar




ic region

Air travel in the Nord

e State of the art fuel cell (PEM)

(3] epmnpy

ic tank model

Dynam

Optimization for design mission

220

180 200

100 120 140 160

80

40

20

Time [min]

12



Parameter ATR 42-500 LH2 PEMFC
MTOW 18.600 kg 21.049 kg %—
MZFW 17.000 kg 20573 kg il |
Wing loading 341 kg/m2 341 kg/m2 AL L
Fuselage length 22.7m 265 m ‘46
Fuselage fineness ratio 7.68 8.98 .
Fuselage wetted area* 208.2 m2 243.6 m2 ’\
Wing reference area 54.5 m2 61.7 m2
Wing aspect ratio* 109 10.9
Wing-span 2457 m 26.16 m
Wing taper ratio* 0.56 0.56
Flap configuration Single-slotted Single-slotted
Lift over drag 16.254 16.480

Approx. -25% (FC
Energy use ber_1e_fit). +11% if_ F_C

efficiency benefit is

not included

Svensson, C., Oliveira, A. A., & Gronstedt, T. (2024).
Hydrogen fuel cell aircraft for the Nordic market.
International Journal of Hydrogen Energy, 61, 650-663.
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Return-without-refuel

* Close to 80% of theoretical
range for a 12 hour on-
ground scenario

e Heavier, well insulated tanks
gives the most operational
flexibility with a small loss in
range

* We could operate whole
Sweden with initially only
three hydrogen hubs
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Medium range
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Parameter

Mach

Maximum Takeoff Weight
(MTOW) (kg)

Operational Empty Weight
(OEW) (kg)

Design range (NM/km)
Tank Volume (including
insulation) (m3)

Tank Weight (kg) (Incl.
Structure/Fairing)

Gravimetric efficiency

Mission fuel mass including
reserves (kg)

Wing Loading (kg/m?)
Wing Area (m?)

Block Energy Use
(MJ/PAX/Km)

FPR (cruise/toc)

OPR (cruisel/toc)

BPR (cruise/toc)

SFC (mg/Ns) (cruise/toc)

*Excluding fairing mass

Jet A1MR2050  LH2 MR 2050
0.78 0.78
Pm————————————
177100 78600 |
—— e el
41400 51300 (+23.9%)
- 35.4/80.2
- 6505

- 49.1% (67.6)*

14746 6280
o o
I 670 596=
I 117 133
0.490 0.579 (¥18%)
1.41/1.49 1.43/1.52
43.8/52.5 42.6/50.4
16.64/15.03 18.5/17
12.6 4.41/4.42

Increased wing loading not possible due to
higher OEW for hydrogen aircraft



Long range
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Parameter Jet A-1 LR 2050 LH2 LR 2050

Mach _&8_5___ 0.85
Maximum Takeoff Weight (MTOW) (kg) |_223_7(£)__:::::22-4§0_3:::
Operational Empty Weight (OEW) (kg) 152300 194300 (+27.6%)
Range (NM/km) -----_------
Tank Volume (including insulation) (m?3) - 714

Tank Weight (kg) (Incl. Structure/Fairing) - 26524
Gravimetric efficiency - 61.4% (72.5%)*
Mission fuel mass including reserves (kg) e A2100

Wing Loading (kg/m?) I 735 601.51
Wing Area (m?) L4_19________4_71 !
Span (m) 69 70.5

Block Energy Use (MJ/PAX/km) 0.641 MJ/PAX  0.797 MJ/Pax (¥24%)
FPR (cruise/toc) 1.42/1.47 1.39/1.45
OPR (cruise/toc) 68.2/75.3 67.4/76.5
BPR 19.6/19.2 23.1/21.7
SFC (mg/Ns) (cruise/toc) 12.24/12.51 4.34/4.35

*Excluding fairing mass

Xisto, Carlos, and Anders Lundbladh. "Design and performance of liquid hydrogen
fueled aircraft for year 2050 EIS." 33rd Congress of the interational council
of the aeronautical sciences. 2022.
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* All hydrogen aircraft ranges seem
feasible

* Potentially large advantages for fuel cell
aircraft if integration is successful

* Tank technology critical for longer ranges

* Synergy between advanced airframe
designs and storage improves
performance but is not necessary

Rompokos, P., Rotlt, A., Nalianda, D., Isikveren, A. T., Senné, C., Gronstedt, T., & Abedi, H. (2021). Synergistic technology
combinations for future commercial aircraft using liquid hydrogen. Journal of Engineering for Gas Turbines and Power, 143(7),
071017.
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Heat manag

ement
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Heat-management potential LH2

» Cryogenic storage

-253 C

» Hydrogen is exceptional
coolant

21

» Using existing surfaces

High heat capacity
More compact HEX

H2 Turbine

~ Temperature
T T

Low High

LH, TANK

-253°C

Booster pump 'B

22K 2.3 bar 17.84 kj/kg
700 K 40 bar 9793.5 kj/kg
1000 K 40 bar 14229 kg/kg



__Intercooler | l
= HPC | ,HPT ﬂll]!] L1
aat]]||— il l = \, \\\

K kEE ) = = /*J/‘
. 11 e

~~ i

- \J Recuperator

Mixer
_ i T S “ GKN AEROSPACE

Mass Architecture HEX mass* Arg

[kg] [kg]
Baseline 3392 1+3+8+2+4 - datum
Interc. 3402 1+3+6+2+4 129 -3.6%
Interc. - Recup. 3681 143464244 326 55y Better Planet | ArTavel  Engineering  GreenEnergy  Avaion  Sweden  CimateChange  FossiFuels

Short-Haul Flights May Be Fossil-Fuel-Free By
2045
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Patrao, Alexandre Capitao, et al. "Compact heat exchangers for hydrogen-
fueled aero engine intercooling and recuperation." Applied Thermal

Engineering 243 (2024): 122538. https://www.newsweek.com/fossil-fuel-free-flights-hydrogen-
22 power-air-travel-1924613
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