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Foreword 

This report forms the results of a project performed withing the Energiforsk 
Vibrations in Nuclear Applications Program. The Vibrations Program aims to 
increase the knowledge of causes, monitoring and mitigation of vibrations, thereby 
contributing to the safety, maintenance and development of a diverse range of 
machinery in the Nordic nuclear power plants. 

The turbogenerator, consisting of steam turbine and generator, is a key piece of 
machinery in the nuclear power plant. The long shaft train connecting steam 
turbine and generator is susceptible for torsional vibrations. Torsional vibrations 
are hard to detect but can cause damage to the machinery resulting in costs and 
unplanned production stops.  

With this study, the Vibrations Program wanted to explore if a so-called Digital 
Twin could be applied to this specific problem. The results of the study show that 
with the right choice of concept and input data, a Digital Twin can be developed to 
help monitor and provide early-stage detection of torsional vibrations. 

The study was carried out by Dr. Herold, Dr. Holzmann and Dr. Nordmann, 
Fraunhofer Institute LBF Darmstadt. The study was performed within the 
Energiforsk Vibrations Program, which is financed by Vattenfall, Uniper, Fortum, 
TVO, Skellefteå Kraft and Karlstads Energi. 

These are the results and conclusions of a project, which is part of a research 
Program run by Energiforsk. The author/authors are responsible for the content.  
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Summary 

Turbogenerators, consisting of steam turbines and generators are 
important components in nuclear power plants. The steam turbines 
convert thermal energy into mechanical energy causing the rotor to spin. 
And the generator produces electrical energy by electro-mechanical 
interactions in the air gap of the generator where the total energy is 
transferred. In case of disturbances in the electrical generator-grid-
system (short circuits, unsymmetric grid loads, Sub Synchronous 
Resonance, …) transient torsional vibrations of the shaft train will be 
excited, which may become very large due to the low damping in the 
system. For a safe and reliable operation, the electro-mechanical 
interaction processes and the torsional vibrations of the shaft train have 
to be observed very careful. A Digital Twin for monitoring and 
evaluating the torsional vibrations can be a well suited and valuable tool 
to solve this task.  

By means of the engineering tools theoretical modelling, numerical analysis and 
experimental analysis the main tasks of simulation, validation and identification 
can be performed to operate a Digital Twin with success. With a Finite Element 
Model (FEM), as an important part of the Digital Twin, torsional vibrations can be 
calculated either as natural vibrations with natural frequencies and mode shapes or 
as forced vibrations due to the electro-mechanical air gap excitation. During 
operation, the real torsional vibrations of the turbogenerator are determined at 
specified locations, where sensors measure torsional displacements or shear 
stresses. By comparison of the measured and the corresponding calculated 
torsional vibrations the vibration difference is introduced into a calibration loop of 
the Digital Twin, in which the actual system parameters of the turbogenerator as 
well as the actual air gap torque can be identified and adjusted. The developed 
Digital Twin can be used as an online system, running permanently parallel to the 
real turbogenerator  

• as a monitoring system, which determines continuously the torsional vibration 
state of the Turbogenerator at each location of the shaft train in the time 
domain as well as in the frequency domain 

• as a detection system for the identification and diagnosis in case of system 
failures, disturbances and parameter changes (mass, stiffness, damping) 

This report describes the development of the Digital Twin and its application, 
especially for the Olkiluoto turbogenerator OL3. By changing the Finite Element 
Model, the Digital Twin can be applied for other units as well. 

Keywords 
 
Digital Twin, Turbogenerator, Torsional Vibrations, Air Gap Torque, Monitoring 
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Sammanfattning 

Turbogeneratorer, som består av ångturbiner och generatorer, är viktiga 
komponenter i kärnkraftverk. Ångturbinerna omvandlar värmeenergi till 
mekanisk energi som får rotorn att snurra. Generatorn producerar 
elektrisk energi genom elektromekaniska interaktioner i generatorns 
luftgap där den totala energin överförs. Vid störningar i det elektriska 
generator-nät-systemet (kortslutningar, osymmetriska nätbelastningar, 
subsynkron resonans, ...) kommer transienta vridningsvibrationer i 
axeltåget att uppstå, vilka kan bli mycket stora på grund av den låga 
dämpningen i systemet. För en säker och tillförlitlig drift måste de 
elektromekaniska interaktionsprocesserna och axeltågets 
torsionsvibrationer observeras mycket noggrant. En digital tvilling för 
övervakning och utvärdering av torsionsvibrationerna kan vara ett väl 
lämpat och värdefullt verktyg för att lösa denna uppgift.  

Med hjälp av de tekniska verktygen teoretisk modellering, numerisk analys och 
experimentell analys kan de viktigaste uppgifterna simulering, validering och 
identifiering utföras för att driva en Digital Twin på ett framgångsrikt sätt. Med en 
Finite Element Model (FEM), som är en viktig del av Digital Twin, kan 
torsionsvibrationer beräknas antingen som naturliga vibrationer med 
egenfrekvenser och modformer eller som påtvingade vibrationer på grund av den 
elektromekaniska luftgapsexcitationen. Under drift bestäms turbogeneratorns 
verkliga torsionsvibrationer på angivna platser, där sensorer mäter 
torsionsförskjutningar eller skjuvspänningar. Genom att jämföra de uppmätta och 
motsvarande beräknade torsionsvibrationerna förs vibrationsskillnaden in i en 
kalibreringsslinga i den digitala tvillingen, där turbogeneratorns faktiska 
systemparametrar och det faktiska luftgapsmomentet kan identifieras och justeras. 
Den utvecklade digitala tvillingen kan användas som ett onlinesystem som körs 
permanent parallellt med den verkliga turbogeneratorn 

• som ett övervakningssystem, som kontinuerligt bestämmer turbogeneratorns 
torsionsvibrationstillstånd vid varje plats i axeltåget i tidsdomänen såväl som i 
frekvensdomänen 

• som ett detekteringssystem för identifiering och diagnos vid systemfel, 
störningar och parameterförändringar (massa, styvhet, dämpning) 

Denna rapport beskriver utvecklingen av den digitala tvillingen och dess 
tillämpning, särskilt för Olkiluotos turbogenerator OL3. Genom att ändra Finite 
Element-modellen kan Digital Twin tillämpas även på andra enheter. 

 

Nyckelord 
Digital Twin, Turbogenerator, Torsionsvibrationer,  Övervakning av 
luftgapsmoment 
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1 Torsional Vibrations of Turbogenerators  

Chapter 1 introduces the research area of Torsional Vibrations of 
Turbogenerators in Nuclear Power Plants (NPP). Due to the fact, that the 
Digital Twin in this research project has been developed especially for 
the Turbogenerator of the Olkiluoto unit OL3, this introduction is partly 
also related to this unit.   

1.1 EXCITATION SOURCES OF TORSIONAL VIBRATIONS 

Turbogenerators, consisting of steam turbines and generators are important 
components in nuclear power plants. The steam turbines convert thermal energy 
into mechanical energy causing the rotor to spin. And the generator produces 
electrical energy by electro-mechanical interactions in the air gap of the generator 
where the total energy is transferred and converted. In case of disturbances in the 
electrical generator-grid system besides the nominal air gap torques additional  
torques due to electro-mechanical interactions will appear. They depend on 
electrical quantities (currents in the rotor- and stator-windings, coupling 
inductances) and on mechanical quantities (torsional displacements and velocities), 
see figure 1 and formula (1.1). 

 

Figure 1: Air GapTorque due to Electro–Mechanical Interaction [Source: TVO] 

The disturbance related air gap torques usually excite high transient torsional 
vibrations in the shaft train, which have a relatively low decay rate due to the weak 
system damping. Disturbance cases are 2-phase and 3-phase short circuits, 
unsymmetrical grid loads (negative sequence current) or also dangerous sub 
synchronous resonances. They will be discussed in more detail in chapter 1.4. For a 
safe and reliable operation the electro-mechanical interaction processes and the 
torsional vibrations of the shaft train should be controlled permanently. To solve 
this task, a Digital Twin for monitoring the torsional vibrations can be a well suited 
and valuable tool. 

Mechanik

Elektrik

MeL

MeL φ
(1.1) 
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1.2 CHARACTER OF TORSIONAL VIBRATIONS OF TURBOGENERATORS 

Torsional vibrations of turbogenerators are described by time dependent torsional 
deformations q(t) along the shaft line. The torsional vibrations can be determined 
by equations of motion, which express the dynamic equilibrium of the time 
dependent air gap torques and the inertia, damping and stiffness torques of the 
different system components. The linear equations of motion are described by a 
model with mass damping and stiffness matrices M, D, K and an excitation vector 
Mel for the air gap torque (Figure 2 and formula 1.2). 

 

 

 

 

Figure 2:  Model of Turbogenerator and Equations of Motion for Torsional Vibrations 

The components to set up the equations of motion are mainly the cylindrical 
elements of the shaft train and the attached turbine blades. The shaft elements 
influence the dynamic behaviour with their moments of inertia and their torsional 
stiffness. The turbine blades with large moments of inertia contribute mainly to the 
inertia terms in the mass matrix. However, the last stage blades in the Low-
Pressure Turbines (LPT) have to be considered as flexible beam elements at higher 
frequencies. In this case, the blades form a dynamic rotor-blade interaction system 
with the shaft. Furthermore the dynamic behaviour of the blades may depend on 
the rotational speed of the shaft train due to stiffening effects by centrifugal forces.                       

The dynamic behaviour of a turbogenerator can be characterized by modal 
parameters, that means by the different torsional natural frequencies with their 
corresponding mode shapes. To each torsional natural frequency belongs a  
damping value, which is called modal damping. If the modal parameters are 
known, the torsional vibration response of the turbogenerator can be presented by 
a sum of single degree of freedom (SDOF) systems for an arbitrary air gap 
excitation. This type of presentation is known as Modal Analysis. 

The torsional damping of turbogenerators is in general very small. The sources are 
in the mechanical as well as in the electrical system. However, the most significant 
sources of the damping seem to come from the electrical parts of the generator and 
the grid, while the contributions from the mechanical turbine shaft (material 
damping, friction, steam,..) are very low. The torsional damping is usually 
considered as modal damping, which means that each modal damping is related to 
one of the torsional natural frequencies. It is important to note, that the modal 
damping of the torsional modes increases significantly with the electrical load 
when the generator is connected to the grid.   

            M 𝐪	̈ (t)  +  D 𝐪̇ (t)  +  K q (t)   =   M
el 

 (t)          (1.2) 

Torsional Vibrations q(t)                 Air Gap Torque M
el 

(t) 
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1.3 TORSIONAL NATURAL FREQUENCIES AND MODE SHAPES 

If the excitation air gap torques in equation (1.2) are set to zero, we obtain the 
homogenous equations of motion for the natural vibrations of the turbogenerator. 
Due to the fact, that the damping is very small, we can neglect the damping term. 
This leads to the homogenous equations (1.4), in which only the inertia and 
stiffness terms M and K determine the free vibrations. 

 

 

 

                              M 𝐪	̈ (t)  +  K q (t)   =   0                                (1.4) 
 
 
With the mathematical approach (1.5) for the free natural vibrations of the system 
and the derivative (1.6) for the acceleration we obtain the Eigenvalue problem (1.7) 

 

 

 

 

 

 

The Eigenvalue analysis leads to the torsional natural frequencies ωj  and to the 
corresponding mode shapes 𝛗j . As an example figure 3 shows the four lowest 
natural frequencies of the OL3 turbogenerator in Olkiluoto. 

 

Figure 3: Lowest Torsional Natural Frequencies and Modes of the OL3 Turbogenerator 

 

5.9 Hz 10.9 Hz

14.6 Hz 24.0 Hz

                               q(t)  =           𝛗 sin ω t                              (1.5) 
   
                               𝐪̈(t)  =   - ω2 𝛗 sin ω t                              (1.6) 
       
                                 (K

 
- ω2 ·M ) ·φ  = 0                             (1.7) 

                 M 𝐪	̈ (t)  +  D 𝐪̇ (t)  +  K q (t)   =   M
el 

 (t)               (1.3) 

 ωj 

 
	𝛗j 
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1.4 TORSIONAL VIBRATIONS DUE TO AIR GAP TORQUES – DESIGN CASES 

In the design process of large turbogenerators, it is common practice to express the 
air gap torque due to electrical disturbances by fixed formulas instead of using the 
more complicated formula (1.1). This is a conservative approach to the real 
vibration behaviour. Experience shows that it is a useful approximation, which is 
often also confirmed by experimental results. Usually, the following electrical fault 
cases are considered during the design, which have the following excitation 
frequencies: 

2-phase short circuit                    1x grid and 2x grid frequency                                                                                                 
3-phase short circuit                    1x grid frequency                                                                                                                                 
Faulty synchronization               1x grid frequency                                                                                                                      
Negative sequence current         2x grid frequency  

In the following we consider the simplified air gap torques for the cases of a 2-
phase short circuit and the negative sequence current (unsymmetric grid loads), 
which will later also be the test cases for the Digital Twin. 

 

Figure 4  Assessment of Torsional Vibrations during  the Design: 2-Phase Short Circuit 

The simplified formula (1.8) shows the electrical air gap torque for a non decaying 
2-phase short circuit, which is a conservative assumption. Excitation frequencies 
are the single grid frequency Ω and the double grid frequency 2 Ω. The formula 
contains also some generator characteristics. In reality the air gap torque is 
decaying. In figure 5 the 2-phase air gap torques with and without a decay are 
presented, see figure 5, left side. The system response for the two cases is shown on 
the right side of figure 5. By comparison the conservative assumption for the case 
without decay seems obvious. Figure 5 also demonstrates the low decay rate of the 
torsional vibrations. 

Turbinen Generator

For simplification the presented formula for
the Electrical Air gap torque of a 2 Phase
Short Circuit does not consider the strong
electromechanical Interaction as previously
shown in formula (1)
It is however a good approximation based on
experience for this kind of disturbance.

(1.8) 
) 



  
 

12 

 

 

 

 

Figure 5: Air Gap Torque and Torsional Response with and without decay [Source: R. 
Nordmann] 

Due to unequal loads in the electrical grid, unsymmetry will occur in the 3-phase 
electrical system. By electrical derivatives it can be shown, that due to this fact, the 
nominal air gap torque is superimposed by a pulsating torque with double grid 
frequency. In a 50 Hz grid system the air gap torque therefore excites the shaft 
train with a frequency of 100 Hz, which is a steady state excitation (Figure 6). 

 

Figure 6: Assessment of Torsional Vibrations during the Design: Unsymmetric Load  

In general, it has to be considered, that the system response always has two 
solution parts: the inhomogeneous solution due to the excitation air gap torque, 
which is superimposed by the homogeneous solution with the natural torsional 
frequencies. The homogeneous solution (natural vibrations) decays in case of 
damping, however in the case of low damping, the decay rate may be very small.  

Due to unequal loads in the electrical grid
and possible failures unsymmetry may
occur in the 3 Phase Electrical system.

Due to this fact the Air gap torque is super-
imposed by a pulsating torque with
double grid frequency. In a 50 Hz grid
the air gap torque therefore excites the Shaft
Train with a frequency of 100 Hz.



  
 

13 

 

 

 

2 Digital Twin for Torsional Vibrations of 
Turbogenerators 

In this chapter 2, the basic idea of a Digital Twin will be presented. After 
a more general description, the application of a Digital Twin for torsional 
vibrations of turbogenerators will be pointed out. 

2.1 THE DIGTAL TWIN – A DIGITAL COPY OF THE REAL SYSTEM 

A Digital Twin is a digital copy of a real system. The basic idea of such a Digital 
Twin is shown in figure 7 for a general system at operation. The deviations 
between sensor observations at the real system and predictions from the model of 
the Digital Twin are the base for an identification and update of the system 
parameters and the operational conditions. The identified system changes can for 
example be an indication for internal system failures or external disturbances. The 
deviations can also be used to generate signals for an active system control. In 
addition, recommendations for experts can be derived from the deviations for a 
possible change of operation conditions. 

 

Figure 7: Digital Twin for a System at Operation 

From figure 7 it can be recognized, that for the function of the Digital Twin, a 
relevant model and analysis procedures are needed. With respect to the 
development of a Digital Twin for the torsional vibrations of a turbogenerator the 
three engineering tools: theoretical modelling, numerical analysis and 
experimental analysis are necessary.  These tools will be discussed in the next 
chapter together with the tasks for the function of the Digital Twin.  

2.2 THE TOOLS FOR THE DEVELOPMENT OF THE DIGITAL TWIN 

Figure 8 shows the three tools, which are usually applied to solve vibration 
problems in mechanical engineering. These tools are besides theoretical modelling 
the numerical and the experimental analysis. The theoretical modelling is based on 
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physical laws, particularly from mechanics. They lead to equations of motion, 
which express the dynamic behaviour of mechanical systems. By means of 
numerical analysis, equations of motion can be solved for natural as well as for 
forced vibrations. And vibrations can be measured by experimental analysis with 
sensors, actuators and devices for signal processing. By different combinations of 
the three tools the following tasks can be performed, which is shown in figure 8: 

Simulation:  Theoretical Modelling & Numerical Analysis                                                                     
Validation:  Numerical Analysis & Experimental Analysis                                                                     
Identification:  Experimental Analysis & Theoretical Modelling 

 

Figure 8: Tools and Tasks to solve Vibration Problems in Mechanical Engineering,  
based on [Source: D. J. Ewins. Exciting vibrations: the role of testing in an era of 
supercomputers and uncertainties. Meccanica - An International Journal of Theoretical 
and Applied Mechanics. DOI 10.1007/s11012-016-0576-y] 
 

In the next two chapters 2.3 and 2.4 it will be shown, that for the development of the 
Digital Twin for torsional vibrations of turbogenerators all three tasks simulation, 
validation and identification are necessary to achieve the requirements for the 
Digital Twin. The concept of the Digital Twin will be presented in chapter 2.3, 
followed by the presentation of the components and their interaction in chapter 2.4. 

2.3 CONCEPT OF THE DIGITAL TWIN FOR TORSIONAL VIBRATIONS 

The concept of the Digital Twin for torsional vibrations of turbogenerators is 
presented in figure 9. The real system of the turbogenerator (black frame) is excited 
by air gap torques leading to real torsional vibrations along the shaft train. Some of 
these vibrations are measured by sensors at defined locations. These sensor signals 
are input data for the Digital Twin of the turbogenerator (blue frame). They are 
transferred to the internal difference location.   

An important part of the Digital Twin is a model, in this case a Finite Element 
Model: 1. With this FE Model, natural vibrations as well as forced torsional 
vibrations due to the excitation can be calculated at each location along the shaft 
line. The part of the calculated torsional vibrations corresponding to the sensor 
positions is also transferred to the difference location: 2.  

Validation

SimulationModelling for
Design & Operation

Experimental
Analysis

Numerical
Analysis

Identification

Digital 
Twin 
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Figure 9: Concept of the Digital Twin for Torsional Vibrations of Turbogenerators                                               

The differences between the measured and the calculated vibrations are introduced 
via feedback into the calibration component of the Digital Twin. The feedback and 
the calibration are subdivided into two parts, one for calibrating the system 
parameters of the model (3) and one for the excitation (4). This is necessary since 
the torsional vibrations as a system output can be influenced either by the 
excitation (system input) or by possible changes of the system parameters. If the 
Digital Twin works without problems in the way of the described concept, the 
state of the torsional vibrations of the turbogenerator can be determined at any 
time of operation and at any location of the FE model. Besides the torsional 
vibration, other derived quantities like stresses, torques etc can be determined as 
well. In figure 9 the four components of the Digital Twin are marked by their 
numbers: 1. Finite Element Model of the turbogenerator, 2. Comparison point of 
the Digital Twin (Difference of measured and calculated vibrations), 3. Calibration 
of the mass and stiffness matrices and calibration of the modal damping and 4. 
Calibration of the air gap torque. These components are described in more detail in 
chapters 3 to 7. 
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3 Finite Element Model of the Digital Twin 
(Component 1) 

For the development of the Digital Twin, the first component has been 
built up as a Finite Element Model of the turbogenerators shaft train (see 
Figure 9). The Energiforsk steering group decided, that as a test case in 
this research project the first Digital Twin should be developed for the 
unit OL3 Turbogenerator in Olkiluoto.   

3.1 THE FINITE ELEMENT MODEL FOR TORSIONAL VIBRATIONS 

In chapter 1.2 it has already been discussed that the torsional vibrations can be 
described by a model with mass- damping- and stiffness-matrices M, D, K and an 
excitation vector Mel for the air gap torque. The equations of motion (2) are 
repeated here as equation (3.1):  

 

 

The elements to set up the equations of motion are mainly the cylindrical elements 
of the shaft train (chapter 3.2) and the attached turbine blades (chapter 3.3). The 
cylindrical shaft train elements as shown in figure 10 for a general turbogenerator, 
influence the dynamic behaviour with their moments of inertia in the mass matrix 
M and with their torsional stiffness in the stiffness matrix K. 

          

 

 

Figure 10: General Turbogenerator and Finite Element Model with Cylindrical Elements 

The original model was first set up in MADYN2000, which provides all necessary 
basic modeling functionalities. A disadvantage is however that the system matrices 
(stiffness, mass and damping properties) are not available and cannot be changed 
programmatically. This provides a major restriction for the Digital Twins 
adaptability. Therefore, the modeling is changed to an implementation by 
Fraunhofer LBF, in this case realized in MATLAB, where all the geometry data of 

            M 𝐪	̈ (t)  +  D 𝐪̇ (t)  +  K q (t)   =   M
el 

 (t)           (3.1) 
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the MADYN model are used. The process of reading MADYN data is automated, 
so it can be repeated for other models.  

In MATLAB, a much better insight in the model is possible, so every parameter can 
be changed and automated procedures with changing parameters in programming 
loops are possible. Especially the system matrices are available and can be 
changed. Part of the global system matrices are the local system matrices – the so-
called substructures. These can also be changed independently, which is a big 
advantage when implementing fault scenarios at certain parts of the rotor. 
Furthermore, there are much better possibilities to share the data for other users.  

The MATLAB finite element model is composed of a coupling of torsional spring-
damper elements with mass properties at the degrees of freedom. The Finite 
Element for the single substructures is derived from literature. Each substructure 
has two torsional degrees of freedom that are coupled with one another. The 
coupling of the single substructures is done using an addition of the single 
substructures according to the global degrees of freedom in the rotor. In this way, 
the global matrices (Mass, stiffness) are obtained.  

The model is transformed to a modally reduced form using the well-known 
approach of modal transformation and truncation. In this way, the model’s degree 
of freedom could be reduced, so it becomes more efficient in simulation. This can 
become relevant for larger models but in this case also the full model is fast to 
compute since it does not have a lot of degree of freedom.  

Finally, a good agreement with the Madyn model (FRF-comparison) was observed 
underlining the approach being reasonable.  

3.2 MASS AND STIFFNESS OF THE TURBOGENERATOR SHAFT TRAIN OL3 

The mass matrix M and the stiffness matrix K of the overall shaft train consist of 
the matrices of the cylindrical elements of the shaft and the mass and stiffness 
contributions from the blades (chapter 3.3). In a first step we consider only the 
element matrices Kn and Mn of the cylindrical shaft elements (n = 1,2,….N). They 
are also known as local stiffness and mass matrices for each Finite Element. Due to 
the fact that each shaft element has two torsional degrees of freedom (each on one 
side), Kn and Mn are simple 2x2 matrices. They can be derived for each of the 
elements with approach functions via the principle of virtual work:  

 

         Kn  =  (G IT/l)n  & 1 −1
−1 	1 )  (3.2)      Mn  = ( µ+ l )n   	,1/3 1/6

1/6 1/30   (3.3) 

 

The necessary geomety and material data for each cylindrical element n are the 
following: 

        l    [  m   ]         Shaft length of element 

        IT  [  m4  ]         Torsional moment of inertia (GIT/l Torsional stiffness) 
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      	µ$  [kg m]          Polar moment of inertia per unit length (mass effect) 

       G  [N/m2]          Shear modulus of the material 

 

 

Figure 11 Geometrical Data for the OL3 Turbogenerator 

 

The geometrical data in terms of length and diameter (Figure 11) and the material 
data for the local matrices Kn and Mn were delivered by TVO. The inner and outer 
diameters of the shaft elements were described in a separate table, which is not 
shown here. These diameters are needed to calculate the torsional moments of 
inertia IT and the polar moments of inertia 	µ$. 

By superposition of all shaft elements, we obtain a first part of the two global 
matrices K and M of the Turbogenerator shaft train. Due to the chain arrangement 
of the shaft elements, the two matrices have a band-structured shape, which has 
advantages for the numerical calculations.  

3.3 MODELLING OF THE TURBOGENERATOR WITH LAST STAGE BLADES 

The turbine blades with large moments of inertia contribute mainly to the polar 
moment of inertia terms in the mass matrix M. However, the last stage blades in 
the Low-Pressure Turbines (LPT) have also to be considered in the stiffness matrix 
K as flexible beam elements in the frequency range between 30 Hz to 120 Hz. In 
this range the blades form a dynamic rotor-blade interaction system with the shaft. 
Furthermore, the dynamic behaviour of the blades may depend on the rotational 
speed of the shaft train as well due to stiffening effects by centrifugal forces.  

Unfortunately, it was not possible to obtain the exact geometrical data for the last 
stage blades of the LPT’s to model the dynamic rotor-blade interaction. This is 
especially a disadvantage for modelling the stiffness behaviour of the blades. The 
only data we could receive for the last stage blades are related to the inertia terms:  

• Mass of one blade including the root part mbl                     272   kg 
• Radius of the center of gravity of one blade RcG               2.156   m 
• Number of blades in the LPT last stage row                           44 
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The part of the polar moment of inertia for the flexible last stage blade row is 
therefore: 

         ΘLSB = mbl x RcG x 44  =  55631 kg m2 

This inertia term has to be considered for each last stage blade row, when the 
dynamic rotor blade interaction is modelled with stiffness and inertia effects.   

In Table 2 the total polar moments of inertia are presented for the different rotor 
parts of the OL3 shaft train. These values include all inertia terms of the shaft train 
and the blades as well. When creating the mass matrix M for the complete system 
it has to be considered, how the inertia terms are distributed to the parts of the 
shaft and the blades.   

To consider the dynamic rotor blade interaction of the six last stage blade rows of 
the LPT’s in an optimal way, we developed a simplified model (see figure 12), 
based on the following assumptions: When the blades are excited by the torsional 
motion of the shaft, the blades will vibrate mainly in a bending mode in tangential 
direction. All blades will vibrate with the same phase. If all blades vibrate only in 
their first bending mode, the simplest model for the complete blade row would be 
a ring with a polar moment of inertia, which is connected to the rotor by one 
torsional spring.  

Rotor                    Length l                          Mass m             Polar Moment of Inertia 𝚯p 

                                  [mm]                                [kg]                                 [kgm²] 

HP                             7685                                96670                                 37601                                

LP1                          12500                              322852                               427799                               

LP2                          12500                              322852                               427799                                 

LP3                          12500                              322852                               427799                     

Generator              16775                              250678                               100017                         

Exciter                      6528                                25303                                   3965 

Table 1: Length, Mass and Polar Moment of Inertia of the Rotors of the OL3 Shaft Train 
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Figure 12   Modelling of the LPT Last Stage Blade Row by a simplified TDOF Model  

Experience showed that this model was not sufficient to lead to good results. The 
model has therefore been extended to a Two Degree of Freedom (TDOF) model, 
consisting of two rings with polar moments of inertia Ө1 and Ө2 and two torsional 
springs with torsional stiffness values k1 and k2. This model is shown in figure 12 
together with the last stage blade row of the turbogenerator OL3. 

To obtain an optimal FE-Model for the turbogenerator with the above described 
effects (e.g. rotor-blade interaction, etc.) numerical calculations for the torsional 
natural frequencies and the corresponding mode shapes were performed and 
compared with existing results from the manufacturer of the turbogenerator. Later 
on, the calculated results have also been compared with measured results. The 
process of the model development was performed by a Sensitivity analysis (see 
chapter 5.1), in which the parameters of the model could be identified and adjusted 
by comparison of the calculated natural frequencies and the corresponding 
reference values from the manufacturer. During the identification procedure the 
mass- and stiffness-parameters of the shaft train did not change very much. The 
parameters of the TDOF model for the attached last stage blades had finally the 
following values for the adjusted model: 

                     Polar Moment of Inertia              Torsional Stiffness 

                     Ө1  =   37086      kgm2                                  k1   =   6,4 e+09  Nm/rad 

                     Ө2  =   18543      kgm2                    k2   =  3,2 e+09   Nm/rad 

            Table 2: Polar Moment of Inertia and Torsional Stiffness of Blade Model 

With the identified matrices M and K, we have a validated FE-Model, which 
describes very well the inertia and stiffness characteristics of the OL3 
turbogenerator at normal operation. With this Base Model of the Digital Twin, we 
can already determine very well the torsional natural frequencies and mode shapes 
of the turbogenerator shaft train including the interaction with the blades at 
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normal operating conditions. Damping in the turbogenerator is very small and can 
therefore be neglected when calculating the natural frequencies and mode shapes. 
However, we will come back to mechanical and electrical damping later, when 
damping becomes the resistance to excitation.  

3.4 NATURAL FREQUENCIES AND MODE SHAPES OF THE BASE MODEL 

The developed FE-Model for torsional vibrations of the OL3 Turbogenerator is 
shown in figure 13. As described in chapter 3.3 it considers the inertia and stiffness 
effects of the shaft train and the turbine blades. As a special feature the rotor-blade 
interaction has been considered in the model at the six last stage blade rows of the 
three LPT’s. The dynamic characteristic of this Base Model is determined by the 
stiffness matrix K and the mass matrix M for normal operation conditions. 

 

 

Figure 13  FE-Model of the OL3 Turbogenerator with Turbines and Generator 

 

As already shown in chapter 1.3 we can solve the Eigenvalue problem (3.4)  

                                                                                                  

to obtain the circular torsional natural frequencies ωj [1/s] and the corresponding 
torsional mode shapes 𝝋j. The torsional natural frequencies in Hz can be determined 
by  

                                               fj = ωj / 2𝜋  [Hz].                                 (3.5) 

3.5 COMPARISON WITH RESULTS FROM THE MANUFACTURER 

Figure 14 shows the 18 first torsional natural frequencies in Hz up to the frequency 
of 80 Hz, which were calculated with the Digital Twin Base Model. The natural 
frequencies have been compared with the design natural frequencies of the 
manufacturer (Reference). The frequency values of the Digital Twin FE-Model are 
in good correlation with the reference values. The error in [%] is less than 2 % in 
the whole frequency range up to 80 Hz. This promises a good performance of the 
Digital Twin in the required frequency range. 

 HPT          LPT1               LPT2                LPT3             GENERATOR 

                         (K
 
– ω 2 ·M) ·φ = 0                         (3.4) 
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 Figure 14 Torsional Natural Frequencies fj [Hz] of Turbogenerator OL3 and Error [%]  

3.6 COMPARISON WITH RESULTS FROM MEASUREMENTS 

During commissioning of OL3, first torsional natural frequency measurements 
were taken at the turbogenerator at normal operation. In Table 3 these measured 
natural frequencies are compared with calculated values from the FE-Base-Model. 

No.      FE-Model Digital Twin     Measurement at OL3           Error [%]    

1                     5,90  Hz                               5,67  Hz                          +   4,0   %                                                             
2                   10,90  Hz                             10,62  Hz                          +   2,6   %                                                                
3                   14,60  Hz                             14,37  Hz                          +   1,6   %                                                                        
4                   24,00  Hz                             23,24  Hz                          +   1,0   %                                                                       
5                   38,28  Hz                             35,61  Hz                          + 10,3   %                                              
6                   39,10  Hz                             39,28  Hz                          -   0,4   %                                                              
7                   40,52  Hz                             40,24  Hz                          +   0,7   %                                                                       
8                   57,65  Hz                             55,88  Hz                          +   3,2   %                                                                  
9                   58,55  Hz                             60,59  Hz                          -   3,4   %                                                        
10                  65,88  Hz                              64,90  Hz                           +   1,5  %          

Table 3   Comparison of Measured and Calculated Torsional Natural Frequencies fj [Hz], 
[Source of Measurement eigenfrequencies: TVO]  

As can be seen in the frequency spectrum from 0 to 70 Hz at normal operation 
(figure 15 and 16) the four first torsional natural frequencies could be identified 
very well. And the comparison with the calculated natural frequencies from the 
FE-Base Model is also quite good. At higher frequencies (30 – 70 Hz) the peaks 
could still be identified by measurements, although the signal to noise ratio is not 
optimal. With the exception of the calculated natural frequency 38,28 Hz with an 
error of 10 % all other frequencies can well be predicted by means of the FE-Base 
Model with deviations in the range of 1% to 3 %. As a conclusion, the FE-Base 

Torsional Natural Frequencies Hz  
                   up to 80 Hz 
 
 
Error in % related to the Reference 
less than 2 % in the whole range 
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Model predicts very well the torsional natural frequencies of the turbogenerator 
OL3 in the required frequency range. This statement can also be confirmed by 
another comparison of calculated and measured torsional natural frequencies in 
figure 16. In comparison to measurements figure 16 shows a clear and accurate 
presentation of the dynamic behaviour of the turbogenerator by means of the FE-
Base Model.  

 

Figure 15: Measured Torsional Natural Frequencies fj [Hz] of Turbogenerator OL3 [Source: 
VTT / TVO] 

 

Figure 16: Comparison of Measured and Calculated Torsional Natural Frequencies fj [Hz]                                   
of the Turbogenerator OL3 in the frequency range up to 100 Hz [Source: VTT] 

3.7 DAMPING OF THE BASE MODEL 

From chapter 3.4 we learned, that the torsional natural frequencies ωj and the 
corresponding mode shapes 𝝋j can be calculated very accurately, if only the mass 
matrix M and the stiffness matrix K are known. The damping matrix D is not 
needed for the determination of ωj and 𝝋j, because the damping of turbogenerators 
is very small and has nearly no influence on the modal parameters ωj and 𝝋j. 
However, damping becomes important when torsional vibrations of a 
turbogenerator due to air gap torque excitations have to be investigated. In case of 

5,676 Hz (5,9 Hz)

10,62 Hz (10,9 Hz) 14,377 Hz (14,6 Hz)

23,238 Hz (24,0 Hz)

© ALSTOM 2009. All rights reserved. Information contained in this document is provided without liability for information purposes only and is subject to change without notice. No representation or warranty is given or to be implied as to the completeness of information or fitness for
any particular purpose. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

© Fraunhofer LBF

5.8 Hz
10.8 Hz

14.4 Hz
23.4 Hz 35,39,40Hz

64 Hz

5.9 Hz 10.9 Hz

14.5 Hz

23.8 Hz

65-66 Hz

38,39,40Hz 57-58 Hz

25 Hz

50 Hz 75 Hz 100 Hz

75 Hz

78, 80 Hz

    10            20           30           40           50           60           70      fj  [Hz] 



  
 

24 

 

 

 

resonances, particularly in the case of Sub Synchronous Resonance (SSR), positive 
damping of any size helps to stabilize the vibrations. Damping should therefore in 
any case be considered, when forced torsional vibrations are investigated. 

The damping of the combined mechanical-electrical vibration system consists of 
two parts: the mechanical damping of the turbogenerator shaft train and the 
electrical damping from the generator and the grid. It is well known that the 
mechanical damping (material, steam, blade joints) of the shaft train is small 
compared to the electrical damping. It has also to be considered, that the 
mechanical damping as well as the electrical damping depend on the electrical 
load of the turbogenerator. 

In chapter 3.8 it will be shown, how forced torsional vibrations due to time 
dependent air gap torques can be calculated by means of the numerical Modal 
Analysis. The Modal Analysis procedure decouples the originally coupled Multi 
Degree Of Freedom (MDOF) equation system (8) of order N into N Single Degree 
Of Freedom (SDOF) systems, each consisting of a modal mass, a modal stiffness a 
modal damping and a modal excitation vector. While modal mass and modal 
stiffness can easily be determined by means of the orthogonality relations of the 
mode shapes 𝝋j (chapter 3.8), the determination of modal damping needs 
experimental support via measurements. This can be done either in the time 
domain, considering the decay rate of transient natural vibrations or in the 
frequency domain by the method of the Half Power Bandwith (HPB). 

In figures 15 and 16 Frequency Response Functions (FRFs) can be seen for the 
turbogenerator between two positions, e.g. between the air gap (input) and one of 
the SSR sensors (output, see also chapter 4.1). If the resonances or the torsional 
natural frequencies in the FRFs are not to close to each other, each resonance peak 
can approximately be considered as a peak of a SDOF-system, and we can apply 
the Half-Power Bandwith method for the identification of the modal damping D. 
The procedure for a SDOF vibration system is explained in figure 17. If a 
Frequency Response Function V =  q+ / F5 of a general SDOF system has been 
measured, we can determine the resonance frequency ωj and the maximum value 
Vmax at this frequency. Based on these values the frequency difference Δω can be 
determined at the amplitude of the FRF: Vmax/√2. By some theoretical derivatives it 
follows, that the modal damping D can be determined by the simple equation: 

                                                        D = Δω / 2ωj                                                                (3.6) 

 



  
 

25 

 

 

 

 

Figure 17: Half Power Bandwith Method for the Determination of the Modal Damping D 
[Source: R. Nordmann, Machine Dynamics] 

The described procedure of the HPB-method has been applied for the four lowest 
torsional natural frequencies f1 – f4 of different frequency spectra, measured by 
VTT at the sensor locations of the OL3 turbogenerator (see chapter 4.1). The data 
were taken for the test cases Turbine trip 0 MW, Generator load 850 MW, Power 
ramp down 1040 MW and Power ramp up 1510 MW.  

The measured values of the modal damping as function of the power of the 
turbogenerator are presented in figure 18 and table 3 for the four lowest torsional 
natural frequencies f1 -f4 in Hz. They are in the range of D = 4,9 e-4 to 27,9 e-4 or in 
percentage D [%] = 0,049 to 0,279 %. These values are very low. The diagram shows 
an increase of the modal damping with power. However, a decrease of the 
damping values at around 1000 MW was not expected and could not be explained 
up to now. This needs additional investigations. However, at this stage the 
damping values in figure 18 and table 3 were used for the further analysis with the 
base model.  

Since the quality of the measured frequency spectra data was not very good in the 
higher frequency range, the evaluation of modal damping values was not 
satisfying. Therefore, for all higher modal damping values, an estimated value of D 
= 0,001 or in percentage D [%] = 0,1 % was assumed for the Base Model. 
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Figure 18: Modal Damping D versus Power for the Torsional Frequencies f1 -f4    

 

                             f1 = 5,67 Hz    f2 = 10,62 Hz  f3 = 14,37 Hz  f4 = 23,24 Hz   

 

Table 3: Modal Damping D versus Power for the Torsional Frequencies f1 – f4 

3.8 FORCED TORSIONAL VIBRATIONS WITH THE BASE MODEL 

In this chapter, it will be shown, how forced torsional vibrations due to time 
dependent air gap torques can be calculated by means of the numerical Modal 
Analysis method. We start with the coupled equations of motion (3.9) for the 
turbogenerator, which have already been described in chapters 1 and 3.  

 

 

f1 
 
 
 
 
 f2 

f3 

f4 

Modal Damping Dj 

                       M 𝐪	̈ (t)  +  D 𝐪̇(t) +  K q (t)   =   M
el 

 (t)                          (3.9)     
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The Modal Analysis procedure decouples the Multi Degree Of Freedom (MDOF) 
equation system (3.9) of order N (N number of degrees of freedom) into N Single 
Degree Of Freedom (SDOF) systems, each one consisting of a modal mass, a modal 
stiffness, a modal damping and a modal excitation vector. This decoupling of the 
equations of motion can be achieved by a development of the torsional 
displacement vector q(t) in terms of the eigenvectors 𝛗n of the system without 
damping (see chapters 1.3 and 3.4 and equation (3.10)).  

 

                                           𝐪(t) = ∑ 	p!"
!#$ (t) 𝛗n                             (3.10) 

 

We introduce equation (3.10) into equation (3.9), multiply from the left side with a 
transposed eigenvector 𝝋kT and obtain the following equation (3.11) 

 

     ? @𝛗%
&𝐌𝛗!	p̈!(t) + 𝛗%

&𝐃𝛗!ṗ!(t) + 𝛗%
&𝐊𝛗!	p!(t)E

"
!#$ = 	𝛗%

&		𝐌
𝐞𝐥
(t)  (3.11) 

 

In the theory of vibrations, it is shown that due to the orthogonality character of 
the eigenvectors 𝛗n the following eigenvector products are defined 

 

 𝛗%
&𝐌𝛗! =  mk for k = n     and     𝛗%

&𝐌𝛗! = 0   for k # n                    (3.12) 

 𝛗%
&𝐊𝛗! = kk  for k = n     and      𝛗%

&𝐊𝛗! = 0    for k # n                    (3.13) 

 

where mk  is the so called modal mass and kk  is the modal  stiffness, both of them 
belong to the natural torsional eigenfrequency fk or ωk (subscript k). If the 
assumption is made, that the damping matrix D is proportional to K and M 
(Rayleigh-Damping) , than the following relations are also true for the damping 

 

𝛗%
&𝐃𝛗! = dk  for k = n     and      𝛗%

&𝐃𝛗! = 0  for k # n                     (3.14 

With the introduced modal quantities mk , dk , kk we can now write down the N  
decoupled SDOF equations, which belong to the different natural frequencies  ωk 

 

          mk p̈k(t) + dk ṗk(t) + kk pk(t)  =   𝛗kT Mel (t)             (k = 1, 2, 3,…..)    (3.15) 

 

On the right-hand side of each SDOF equation the scalar vector product 𝛗kT Mel (t) 
describes the time dependent excitation. By means of this vector product it can be 
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found out how strong the torsional vibrations can be excited in a resonance at ωk. 

The other important factor in a resonance is the damping. For the damping, we can 
introduce the modal damping values from chapter 3.7. The relation between the 
modal damping Dk and the damping dk from equation 3.15 is 

 

                             Dk    =   dk / (2 mk ωk)  =   dk / 2 (√𝑘k mk)                 (3.16) 

 

When the equations 3.15 as SDOF equations have been solved, the results pk (t) can 
be introduced in equation 3.10 and the solution for the complete vector q(t) with 
the torsional displacements can be obtained. 

As an example, in figure 19 the torsional response amplitudes in rad are shown for 
the location of the sensor position 8 between the LPT3 and the generator (see figure 
23 in chapter 4.2), when the OL3 turbogenerator is excited by a harmonic unit air 
gap torque in the frequency range between 0 and 100 Hz. In figure 19, we clearly 
see the different modal contributions of the different natural frequencies and 
modes. The resonance peaks are relatively sharp due to the very low damping 
values. 

With component 1, the Finite Element Model of the turbogenerator, the most 
important component of the Digital Twin has been developed and can be used.  

 

Figure 19: Torsional Response Amplitudes [rad] due to Harmonic Unit Air Gap Torque 

Modal Contributions to the Frequency Response Function
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4 The Comparison Point of the Ditigal Twin 
(Component 2) 

The second component of the Digital Twin is the Comparison Point 2. 
The comparison point has two inputs. The first input contains measured 
data from the real system of the turbogenerator and the second input 
delivers corresponding data from the Finite Element Model. The 
difference of the two inputs is the output of the comparison point. This 
difference will be transfered to the components 3 and 4 for calibration 
(Figure 20) of the Finite Element Model (Model parameters and 
excitation). 

 

 

Figure 20: Comparison Point of the Digital Twin for measured and calculated vibrations 

4.1 THE MEASURED TORSIONAL VBRATIONS OF THE SHAFT TRAIN 

The measurement of torsional vibrations at the real turbogenerator system is 
performed outside of the Digital Twin (Figure 20). It is therefore not a part of this 
research project. However, some comments are presented here to understand, how 
the Digital Twin could work in a real Nuclear Power Plant environment including 
the measurement part. 

For the measurement part outside the Digital Twin, a Data Logging system can be 
used. It is an automated tool to collect, store and analyse data. The key components 
of a Data Logging system are: 

Sensors: To detect and measure physical properties such as torsional vibrations of 
the turbogenerator shaft train or stresses of the material. 

Data Logger: A device that collects data from sensors and stores these data. Data 
Loggers can be integrated into other systems. 
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Storage: The data can be stored internally in the logger or transferred to external 
storage like a computer. 

Software: Used for the configuration the data logger, visualizing and analysing the 
collected data. 

A Data Logging system is therefore an important tool to monitor the vibration data 
of a turbogenerator, particularly also for the very sensitive torsional vibrations. In 
the context of the Digital Twin for turbogenerators, the Data Logging system is a 
very important tool in collecting real time torsional vibration data from the 
sensors. This data will be transferred to the comparison point of the Digital Twin 
and will be used to adjust the Digital Twin. Continuous data collection ensures 
that the Digital Twin accurately reflects the current state of the real turbogenerator. 

The Data Logging system is not a part of this project. Therefore, we will not 
describe the system in more detail. However, in different reports from VTT, more 
information about the Data Logging system for the OL3 unit can be found.  

During the commissioning phase of the turbogenerator OL3, the permanently 
installed SSR sensors from Siemens were used to measure torsional vibrations. In 
Figure 21, some details are explained about this sensor type. It uses the anisotropic 
magnetostrictive measuring principle, where stresses at the material surface can be 
observed in a change of magnetic permeability. High stresses and frequencies up 
to around 200 Hz can be measured in this way. In addition, strain gauges were 
installed by VTT for the commissioning phase only. They are no longer available 
for future measurements.  

 

 

 

Figure 21: Monitoring of Torsional Vibrations with the SSR Torque Sensors – Siemens 
[Source: Ingo Balkowski, Siemens: Direct Touchless sensing of torsional vibration stresses 
in Power Plants, EF Vibration Seminar 2023] 

The location of the two sensor types during the commissioning phase are shown in 
figure 23. The strain gauges (blue arrows) have been installed at the locations 4, 6 
and 8 and the SSR sensors (green arrows) at the locations 3, 5 and 8. The probably 
most important sensor point is 8, which is between the LPT3 and the Generator. 
Examples of measured torsional vibrations have been presented in the frequency 
domain in figures 15 and 16 (see chapter 3.6). 

 

Stresses up to
1000 Mpa

Frequency range
0-200 Hz

The Touchless Torque Sensor measures the static and dynamic torques
(stresses) at the rotating turbogenerator shaft train. It is based on the influence of
mechanical stresses on the magnetic permeability of ferromagnetic materials.
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4.2 THE CALCULATED TORSIONAL VIBRATIONS OF THE SHAFT TRAIN 

Calculated torsional vibrations at the corresponding measurement points (sensor 
locations) are the second input for the comparison point. How the torsional 
vibrations of the turbogenerator shaft train can be determined by calculations with 
the Finite Element Model has been demonstrated in detail in chapter 3. This is 
possible for all locations of the Finite Element Model. In Figure 23, the essential 
calculation possibilities are highlighted again. 

 

Figure 22: Calculation of Torsional Vibrations by means of the Digital Twin FE-Mode 

4.3  DIFFERENCE OF MEASURED AND CALCULATED VIBRATIONS 

As has been shown in figure 20 at the comparison point 2 of the Digital Twin 
(Comparison point), the measured and calculated torsional vibrations can be 
compared for locations of the shaft train, where vibration sensors are installed (see 
figures 22 and 23). For this comparison, measured and calculated values should 
have the same physical quantity, e.g. torsional displacements, strains or stresses of 
the shaft train. Due to the fact, that the installed sensors measure shaft stresses or 
strains, relations have to be known between the different physical quantities. 

The conversion from torsional strain 𝜀 to shear stress 𝜏 and the shaft torque Mt can 
be calculated with the following equations: 

       Shear (Torsional) Stress                       	𝜏 = Mt / Wp                                        (4.1)          

       Torsional Moment of Resistance        Wp = 𝜋 D3 /16                     (4.2)        

       Torsional Strain                                     𝜀 = (1 + 𝜈 ) Mt / (E Wp )    (4.3) 

 𝜈, 𝐸 and D are the poisson's ratio, the Young’s modulus and the diameter of the 
shaft.                                                                                    
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5 The Calibration of the Mass and Stiffness 
Matrices of the Shaft Train (Component 3)  

The calibration of mass and stiffness parameters of the turbogenerator is 
based on measured and calculated torsional vibrations. The differences 
between the calculated and the measured torsional natural frequencies 
indicate possible changes of masses or stiffness values. A procedure is 
described, how these frequency differences are used for the calibration. 

 

 

Figure 23 Component 3 of the Digital Twin Calibration of Mass and Stiffness 

5.1 SENSITIVITY ANALYSIS FOR THE TORSIONAL NATURAL FREQUENCIES 

In chapter 1.3 it has been shown, that the torsional natural frequencies ωi depend 
on the mass matrix M and on the stiffness matrix K. From this it can be concluded 
that a change of the natural frequencies can be considered as some change of mass 
and/or stiffness parameters. For the introduced Base FE Model at normal operating 
conditions, the system matrices M and K, the natural frequencies ωi and the mode 
shapes 𝛗i are known from the design, from measurements during the 
commissioning phase and from latest measurements during normal operation. 
Therefore, the question arises how possible parameter changes ΔM and /or ΔK can 
be determined from measured deviations of the torsional natural frequencies 
related to the Base Model for normal operation. This calibration task is performed 
in the component 3 of the Digital Twin (see figure 24). It is based on a Sensitivity 
Analysis for the torsional natural frequencies. The idea of the calibration is, that the 
torsional natural frequencies will change more or less, when the system parameters 
like mass and stiffness values will change. 

The eigenvalue problem from chapter 1 is repeated in (5.1) for the natural 
frequency ω' and described with the substitution λ' = ω'

( in equation (5.2). This 
eigenvalue equation can be derived according to any system parameter pk, where 
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pk can be a mass parameter or a stiffness parameter as well. The result of this 
partial differential derivation is shown in formula (5.3). 

                                                  (K – ωi 2 M) · φi  =  0                      (5.1)       

                                                  (K – 𝜆i M) ·   φi  =  0                      (5.2)   

 

                                           λ i,k  =  𝛗iT( - λ i M, k  +  K, k ) 𝛗i                (5.3)              

 

As a sign for the partial derivative of a quantity (shown here as braces) according 
to pk we have used the short form, shown in (5.4) 

                                                       𝜕(  )/ 𝜕pk  = (  ),k                                      (5.4) 

In equation (5.3) it is also assumed, that the eigenvectors are normalized to 1 
corresponding to equation (5.5)  

                                                       𝛗iT  M 𝛗i    =  1.                          (5.5) 

The partial derivation of an eigenvalue 𝜆i according to a system parameter pk in 
(5.3) is called the Sensitivity, which can be expressed as   

                                                  Sik  =  λi,k  =  ∂(λi)/ ∂pk.                            (5.6)      

The change of an eigenvalue 𝜆i due to changes of a set of system parameters  pk can 
be expressed by a Taylor series. A good result can often be achieved with a linear 
approximation (5.7). The Δ quantities for the eigenvalues and the parameters 
indicate the deviations related to the normal operation  

 

                   Δλ i   =  λ i,1 Δ p1   +    λ i,2  Δ p2    +  		λ i,3  Δ p3     +……+   λ	i,K  Δ pK             (5.7) 

 

If we consider several eigenvalues (i = 1, 2….I) and several parameters (k = 1, 2..K) 
the relations between all changed eigenvalues and the changed parameters can be 
expressed by the two vectors  Δ 𝝀  for the I eigenvalues and  Δp  for  the K system 
parameters. The IxK matrix S contains the sensitivities (see 5.3 and 5.6) 

 

                                               									Δ 𝝀   =    S  Δp                                      (5.8)         

 

From the measured eigenvalue changes Δ𝝀 and the known sensitivity matrix S for 
the normal operation condition, the parameter changes Δp can finally be 
determined by an inverse calculation.                           
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5.2 THE CALBRATION PROCEDURE FOR MASS AND STIFFNESS  

 

The calibration procedure, which has been implemented at the Fraunhofer Institute 
is shown in the Block diagram in figure 25. It describes the iterative procedure to 
find out mass and stiffness parameter changes in case of changes in the measured 
spectrum of the natural frequencies. 

 

 

Figure 24: Calibration Procedure for Mass and Stiffness Parameters of the Turbogenerator 
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6 The Calibration of the Modal Damping 
(Component 3) 

Besides the possible changes of mass and stiffness values during 
operation of the turbogenerator, the modal damping values may also 
show variations due to different effects: Power change, disturbances in 
the electrical system, SSR, etc. In such cases, the modal damping has to 
be calibrated as well during operation (Component 3 in Figure 24). 

6.1 THE HALF-POWER-BANDWITH METHOD 

The Half Power Bandwith method to determine the modal damping has already 
been explained in chapter 3.7. The same method will also be applied, when the 
modal damping of the different mode shapes is changing during the operation 
compared to the Base Model (see figure 26)    

 

Figure 25: Half Power Bandwith Method for the Determination of the Modal Damping D 
[Source: R. Nordmann]  

6.2 THE CALIBRATION FOR THE MODAL DAMPING AT OPERATION 

During operation of the turbogenerator the modal damping values can be checked 
continuously by using the Half Power Bandwith method for the actual measured 
sensor signals, presented in the frequency spectra. It is important to note again, 
that the modal damping consists of two parts: mechanical damping and electrical 
damping with a dominance of the electrical part. The cause of changes of modal 
damping during operation of the turbogenerator will therefore in the most cases an 
electrical event. The variation of the Power is one example, where modal damping 
changes. Another very important case is an SSR-event, which may lead to a strong 
variation of the damping. In a worst case the modal damping may also become 
negative, which means instability for torsional vibrations of the shaft train. 
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As an example, for the calibration of the modal damping during operation the 
procedure has been tested with a simulated measurement signal, in which the 
modal damping of the 2nd torsional natural frequency at 10,9 Hz has been reduced 
to 20 % of the original damping D = 0,001 (D [%] = 0,1 %, figure 27). 

 

 

Figure 26: Calibration of the Modal Damping for the 2nd Torsional Natural Frequency  

By applying the half power bandwith method according to the generated test 
signal, the changed modal damping value could be identified very well, leading to 
the new value of D = 0,00021 (D [%] = 0,021 %). 

Ø Modal damping of the torsional natural frequency at 10,9 Hz has been reduced in a
simulated test signal (measurement) to 20 % of the original value D = 0,001 (Figure 18)

§ Using halfpower-bandwith method for determination of the changed modal damping

§ Digital Twin calculates the correct change in damping for the simulated test signal

Calculated damping
(reduced)

Changed
damping

Calculated
damping (initial)

Initial
dampingBearing

0,00021

0,0002

0,001

0,001

4

0,000210,0016

0,000210,0018
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7 Calibration of the Air Gap Torques 
(Component 4) 

The change of the torsional vibration behaviour of the turbogenerator 
can be caused either by parameter changes ΔM, ΔK and ΔD or by a 
change the Excitation, e.g. by the Air Gap Torque. In this chapter we 
describe, how the identification of a change of the Air Gap Torque can be 
recognized, based on the measured sensor signals (Component 4 in 
Figure 27). 

 

 

Figure 27 Component 4 of the Digital Twin: Calibration of Air Gap Excitation 

7.1 COMPARISON OF CALCULATED AND MEASURED SHAFT STRESSES 

It has to be mentioned again, that shaft stresses are measured by means of the SSR 
sensors. Therefore, at the Comparison Point the calculated values by means of the 
FE Model have also to be shaft stresses. Equations (4.1 – 4.3) in chapter 4.3 are used 
to calculate the shaft stresses with the FE-Model. 

7.2 THE CALIBRATION PROCEDURE FOR THE AIR GAP TORQUE 

One possibility to identify the actual Air Gap Torque during normal operation or 
in a special excitation event (Short circuit, negative sequence current, SSR, …) 
could be via measurements of electrical quantities, which influence the Air Gap 
Torque (see equation 1.1 in in chapter 1.1). In the Digital Twin development 
another procedure was used, which works with the measured and calculated shaft 
stresses, which are compared at the Comparison Point 2 (see Figures 20 and 27). 

The Calibration procedure for the Air Gap Torque is shown in figure 28. With the 
FE Base Model the dynamic shaft torques are calculated for each Finite Element of 
the turbogenerator in the frequency range between 0 and 100 Hz, when the Air 
Gap Torque excites the shaft train with a Unit Torque Amplitude of 1 kNm.  
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Figure 28 Component 4 of the Digital Twin: Calibration of the Air Gap Torque 

From the calculated dynamic shaft torques the dynamic torsional stresses can be 
determined for each element by means of equation 4.1 and 4.2, especially for those 
elements, where the sensors are located. The calculated dynamic stresses are then 
compared with the measured stresses. Based on this comparison the Excitation Air 
Gap Torque will be adjusted corresponding to the measured torsional stress. As a 
result, the calibrated Air Gap Torque will be obtained for all frequencies in the 
range of 0 to 100 Hz. 

In chapter 10 it will be shown, how the Air Gap Torque for the two cases of a Two-
Phase Short Circuit and a Negative Sequence Current can be determined by the 
described procedure. 
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8 Digital Twin - a Continuous Monitoring 
System for the Turbogenerator 

The developed Digital Twin for Torsional Vibrations of Turbogenerators 
can be used as an extended Monitoring System, that continuously 
observes the dynamic torsional behaviour during operation and at 
special events. The produced data of the FE-Model can be presented at all 
locations of the Turbogenerator system (Figure 29). 

 

 

Figure 29: Digital Twin as a Continous Monitoring System 

8.1 VIBRATIONS AND STRESSES AT ALL LOCATIONS- VIRTUAL SENSORS 

It has been shown in the chapters before, that the Digital Twin can be used as a 
continuously working Monitoring System, that delivers torsional vibrations, 
torsional shaft torques and torsional stresses at each location of the turbogenerator 
(Virtual Sensor) during normal operation and at special vibration events. Results 
can be presented in the time domain as well as in the frequency domain.    

If the Digital Twin is not connected to the real system via the Comparison Point 2, 
it can also be used as a standalone system. In this mode of operation, the Digital 
Twin can for example investigate measures for improvements of the dynamic 
behaviour. 
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9 Identification of System Parameter Changes 

In this chapter, two cases are discussed, how changes of system parameters (mass, 
damping, stiffness) can be identified by means of the Digital Twin. In the first 
example, modal damping is identified. The second example shows, how stiffness 
parameter changes can be determined. The less likely change of masses in 
turbogenerators is not considered in this chapter. 

9.1 EXAMPLE 1: CHANGE OF ONE MODAL DAMPING, SSR-EVENT 

In this example, a simulated measurement is shown in the time domain and in the 
frequency domain for a change of the modal damping in the 3rd mode with the 
torsional natural frequency of 14,6 Hz. The modal damping for normal operation 
has been identified as D = 0,001 (see figure 18) and it is then reduced to about 20 % 
of the original value. Such a reduction of the modal damping may for example 
occur in case of a Sub Synchronous Resonance (SSR). With the measurement signal 
from one of the SSR sensors the change of the modal damping can be identified by 
means of the Half Power Bandwith method. The influence of the lower damping 
can then be used to investigate additional calculations with the FE-Model. 

Figure 30 shows the system response for the unit amplitude excitation for the two 
cases of the damping values in the time domain and in the frequency domain 
When the damping has been identified, the Digital Twin can permanently produce 
such responses, which may help to explain the development of the dynamic 
behaviour of the turbogenerator system. 

 

Figure 30: System Response in the Time and in the Frequency Domain for the Case of     
Changed Damping in the 3rd mode – Possible SSR Event 

 

 

System Response in the Time Domain

System Response in the Frequency Domain

Changed Damping Parameter
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9.2 EXAMPLE 2: CHANGE OF COUPLING TORSIONAL STIFFNESS 

In this second test case, the torsional stiffness of the four couplings is reduced 
successively by 10 %. For each of the four test cases, the change of the torsional 
natural frequencies of the turbogenerator is calculated with the FE Model. The 
changed frequency spectrum is then compared with the spectrum of the system 
with normal stiffness values of the couplings. This spectrum coincides with the 
natural frequency spectrum of the turbogenerator at normal operation (see figures 
15 and 16) and can be considered as spectrum of the Base Model. 

 

Figure 31: Locations of Couplings with reduced Torsional Stiffness 

 

By means of the calibration procedure with the sensitivity analysis (chapter 5) the 
following results could be obtained for each of the four cases of stiffness changes in 
the coupling: 

• The percentage change of the torsional natural frequencies in the frequency 
range between 0 and 100 Hz (see figures 32 and 33) 

• The change of the coupling stiffness in percentage and the determination of the 
location of the stiffness change in the turbogenerator 

The four test examples show that the calibration procedure for the system 
parameters based on the sensitivity analysis (chapter 5) works accurately and in 
real-time. Detailed results are presented in figures 32 and 33. 

Locations for Coupling Damage

Ø Torsional Stiffness in Couplings has been reduced by 10 %

§ Sensitivity based approach is used for Identification of Stiffness Change and Location

§ In theory every Location can be observed for Parameter Changes
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Figure 32: Deviations of Torsional Natural Frequencies, Estimated Changed Stiffness 
Values and location of Damage for the Couplings 1 and 2 

 

Figure 33: Deviations of Torsional Natural Frequencies, Estimated Changed Stiffness 
Values and location of Damage for the Couplings 3 and 4 

 

 

 

 

 

 

Digital Twin estimates Damage Location and Severity

Digital Twin estimates Damage Location and Severity
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10 Identification of the Air Gap Torque 

In this last chapter, two cases are discussed, how changes of the Air Gap Torques 
can be identified by means of the Digital Twin. The general Calibration Procedure 
for the Air Gap Torque has been described in chapter 7. The first example 
considers the Air Gap Torque of a Two-Phase Short Circuit, the second example 
treats the case of the Negative Sequence Current (Unsymmetric Load). For both 
excitation cases no direct measurements of shaft stresses were available as input 
data at the Comparison Point. Due to this fact the Air Gap Torques for the two load 
cases were generated based on existing formula (see figures 4, 6, 33 and 35) and 
introduced as corresponding stresses at the input location of the Digital Twin 
(Comparison Point 2). In case of the Two-Phase Short Circuit the identification 
procedure has been tested for an input with and without noise (figures 33 and 34). 
The following figures 33 -35 show for the two load cases the generated Air Gap 
Torque as excitation time function (left side) and the identified Air Gap Torque 
versus frequency (0 – 100 Hz) with amplitudes in Nm (right side). The accuracy of 
the identified Air Gap Torques is very good (deviations 2 – 3%), when noise is not 
considered (Figures 33 and 35). There are some deviations in the range of 20 % 
when a signal to noise ratio of 10 db is considered (Figure 34).    

10.1 EXAMPLE 3: CHANGE AIR GAP TORQUE DUE TO  2-PH. SHORT CIRCUIT 

 

 

Figure 34: Calibration of Air Gap Torque in case of Two-Phase Short Circuit 

§Two Phase Short Circuit

Air Gap
Torque
[Nm]

§ M t = 𝑀0 + 5,55 × 𝑀0 sin Ωt − 0,5 × sin 2Ωt
• Disturbance at 50Hz and 100 Hz
ØFurther test cases (negative sequence current,

Turbine Trip, SSR, …)

Calibration

6 10 e7 5,66 e7

4 10 e7

2,83 e7

2 10 e7

0
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Figure 35: Calibration of Air Gap Torque in case of Two-Phase Short Circuit with Noise  

 

10.2 EXAMPLE 4:  CHANGE AIR GAP TORQUE DUE TO UNSYMM. GRID 

 

Figure 36: Calibration of Air Gap Torque in case of Negative Sequence Current 

 

Two phase Short circuit

§ Excitation and results data
§ with (artificial) noisy signal
§ Signal to noise ratio: 10 dB

Calibration

6,9 e7

2,9 e7

Air Gap
Torque
[Nm]

§Negative Sequence Current

Air Gap
Torque
[Nm]

§ M t = M0 + MNSC sin (2Ω t)
§ MNSC = 0.5 M0

§ Disturbance at 100 Hz

Calibration

0,5 e7 Nm
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11 Conclusions and Outlook 

11.1 CONCLUSIONS 

This report describes the development of a Digital Twin for Torsional Vibrations of 
Turbogenerators in Nuclear Power Plants.  

The Digital Twin works with a Finite Element Model (FEM), which can calculate 
torsional vibrations either as natural vibrations with natural frequencies and mode 
shapes or as forced vibrations due to the electro-mechanical air gap excitation. 
During operation the real torsional vibrations of the turbogenerator are 
determined at specified locations, where sensors measure torsional displacements 
or shear stresses. By comparison of the measured and the corresponding calculated 
torsional vibrations the vibration difference is introduced into a calibration loop of 
the Digital Twin, in which the actual system parameters of the turbogenerator as 
well as the actual air gap torques can be identified and adjusted. 

The developed Digital Twin can be used as an online system, running permanently 
parallel to the real turbogenerator:  

• as a monitoring system, which determines continuously the torsional vibration 
state of the Turbogenerator at each location of the shaft train in the time 
domain as well as in the frequency domain (Virtual Sensor) 

• as a detection system for the identification and diagnosis in case of system 
failures, disturbances (Air Gap Torques) and parameter changes (mass, 
stiffness, damping) 

The successful operation of the Digital Twin could be demonstrated by some test 
cases. 

11.2 OUTLOOK 

For the operation of the developed Digital Twin in a Nuclear Power Plant, a Data 
Logging system is needed to prepare the measured sensor signals as input for the 
Comparison Point (Component 2 of the Digital Twin). First trials to operate the 
Digital Twin in a plant could be started at the OL3 Turbogenerator, because OL3 is 
already operating with SSR-sensors and has a Data Logging system.  

The developed Digital Twin can also be used in other Scandinavian Nuclear Power 
Pants. However, it needs an adjusted Component 1 of the Digital Twin: The FE-
Modell for the respective turbogenerator of a selected plant.  
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Turbogenerators, integral to nuclear power plants, comprise steam turbines that transform 
thermal energy into mechanical energy and generators that convert this mechanical energy 
into electrical energy. However, disturbances in the electrical generator-grid system can lead to 
significant transient torsional vibrations in the shaft train, necessitating careful monitoring for safe 
operation. This report outlines a Digital Twin designed to monitor and evaluate these torsional 
vibrations, employing theoretical modeling, numerical analysis, and experimental methods for 
successful simulation and validation. Utilizing a Finite Element Model (FEM), the Digital Twin 
accurately calculates and compares real-time torsional vibrations against theoretical predictions. 
This system can not only continuously monitor the vibrational state of the turbogenerator but also 
aid in diagnosing system failures and parameter changes. The development of this Digital Twin is 
particularly focused on the Olkiluoto turbogenerator OL3, with the potential for adaptation to 
other units through model adjustments.
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