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Foreword

This report forms the results of a project performed withing the Energiforsk
Vibrations in Nuclear Applications Program. The Vibrations Program aims to
increase the knowledge of causes, monitoring and mitigation of vibrations, thereby
contributing to the safety, maintenance and development of a diverse range of
machinery in the Nordic nuclear power plants.

The turbogenerator, consisting of steam turbine and generator, is a key piece of
machinery in the nuclear power plant. The long shaft train connecting steam
turbine and generator is susceptible for torsional vibrations. Torsional vibrations
are hard to detect but can cause damage to the machinery resulting in costs and
unplanned production stops.

With this study, the Vibrations Program wanted to explore if a so-called Digital
Twin could be applied to this specific problem. The results of the study show that
with the right choice of concept and input data, a Digital Twin can be developed to
help monitor and provide early-stage detection of torsional vibrations.

The study was carried out by Dr. Herold, Dr. Holzmann and Dr. Nordmann,
Fraunhofer Institute LBF Darmstadt. The study was performed within the
Energiforsk Vibrations Program, which is financed by Vattenfall, Uniper, Fortum,
TVO, Skellefted Kraft and Karlstads Energi.

These are the results and conclusions of a project, which is part of a research
Program run by Energiforsk. The author/authors are responsible for the content.

These are the results and conclusions of a project, which is part of a research
programme run by Energiforsk. The author/authors are responsible for the content.



Summary

Turbogenerators, consisting of steam turbines and generators are
important components in nuclear power plants. The steam turbines
convert thermal energy into mechanical energy causing the rotor to spin.
And the generator produces electrical energy by electro-mechanical
interactions in the air gap of the generator where the total energy is
transferred. In case of disturbances in the electrical generator-grid-
system (short circuits, unsymmetric grid loads, Sub Synchronous
Resonance, ...) transient torsional vibrations of the shaft train will be
excited, which may become very large due to the low damping in the
system. For a safe and reliable operation, the electro-mechanical
interaction processes and the torsional vibrations of the shaft train have
to be observed very careful. A Digital Twin for monitoring and
evaluating the torsional vibrations can be a well suited and valuable tool
to solve this task.

By means of the engineering tools theoretical modelling, numerical analysis and
experimental analysis the main tasks of simulation, validation and identification
can be performed to operate a Digital Twin with success. With a Finite Element
Model (FEM), as an important part of the Digital Twin, torsional vibrations can be
calculated either as natural vibrations with natural frequencies and mode shapes or
as forced vibrations due to the electro-mechanical air gap excitation. During
operation, the real torsional vibrations of the turbogenerator are determined at
specified locations, where sensors measure torsional displacements or shear
stresses. By comparison of the measured and the corresponding calculated
torsional vibrations the vibration difference is introduced into a calibration loop of
the Digital Twin, in which the actual system parameters of the turbogenerator as
well as the actual air gap torque can be identified and adjusted. The developed
Digital Twin can be used as an online system, running permanently parallel to the
real turbogenerator

¢ as a monitoring system, which determines continuously the torsional vibration
state of the Turbogenerator at each location of the shaft train in the time
domain as well as in the frequency domain

e as a detection system for the identification and diagnosis in case of system
failures, disturbances and parameter changes (mass, stiffness, damping)

This report describes the development of the Digital Twin and its application,
especially for the Olkiluoto turbogenerator OL3. By changing the Finite Element
Model, the Digital Twin can be applied for other units as well.
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Sammanfattning

Turbogeneratorer, som bestar av dngturbiner och generatorer, ar viktiga
komponenter i kirnkraftverk. Angturbinerna omvandlar virmeenergi till
mekanisk energi som far rotorn att snurra. Generatorn producerar
elektrisk energi genom elektromekaniska interaktioner i generatorns
luftgap dir den totala energin 6verfors. Vid storningar i det elektriska
generator-nit-systemet (kortslutningar, osymmetriska niatbelastningar,
subsynkron resonans, ...) kommer transienta vridningsvibrationer i
axeltaget att uppstd, vilka kan bli mycket stora pa grund av den laga
ddmpningen i systemet. For en sdker och tillforlitlig drift maste de
elektromekaniska interaktionsprocesserna och axeltagets
torsionsvibrationer observeras mycket noggrant. En digital tvilling for
overvakning och utvirdering av torsionsvibrationerna kan vara ett vl
lampat och vardefullt verktyg for att 16sa denna uppgift.

Med hjilp av de tekniska verktygen teoretisk modellering, numerisk analys och
experimentell analys kan de viktigaste uppgifterna simulering, validering och
identifiering utforas for att driva en Digital Twin pa ett framgéangsrikt satt. Med en
Finite Element Model (FEM), som ér en viktig del av Digital Twin, kan
torsionsvibrationer berdknas antingen som naturliga vibrationer med
egenfrekvenser och modformer eller som patvingade vibrationer pa grund av den
elektromekaniska luftgapsexcitationen. Under drift bestaims turbogeneratorns
verkliga torsionsvibrationer pa angivna platser, dar sensorer mater
torsionsforskjutningar eller skjuvspanningar. Genom att jimfora de uppmatta och
motsvarande berdknade torsionsvibrationerna fors vibrationsskillnaden in i en
kalibreringsslinga i den digitala tvillingen, ddr turbogeneratorns faktiska
systemparametrar och det faktiska luftgapsmomentet kan identifieras och justeras.
Den utvecklade digitala tvillingen kan anvidndas som ett onlinesystem som kors
permanent parallellt med den verkliga turbogeneratorn

e som ett Gvervakningssystem, som kontinuerligt bestimmer turbogeneratorns
torsionsvibrationstillstand vid varje plats i axeltaget i tidsdoménen savéal som i
frekvensdoménen

e som ett detekteringssystem for identifiering och diagnos vid systemfel,
storningar och parameterférandringar (massa, styvhet, dampning)

Denna rapport beskriver utvecklingen av den digitala tvillingen och dess
tillampning, sarskilt for Olkiluotos turbogenerator OL3. Genom att &ndra Finite
Element-modellen kan Digital Twin tillimpas dven pé andra enheter.

Nyckelord

Digital Twin, Turbogenerator, Torsionsvibrationer, Overvakning av
luftgapsmoment
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1 Torsional Vibrations of Turbogenerators

Chapter 1 introduces the research area of Torsional Vibrations of
Turbogenerators in Nuclear Power Plants (NPP). Due to the fact, that the
Digital Twin in this research project has been developed especially for
the Turbogenerator of the Olkiluoto unit OL3, this introduction is partly
also related to this unit.

11 EXCITATION SOURCES OF TORSIONAL VIBRATIONS

Turbogenerators, consisting of steam turbines and generators are important
components in nuclear power plants. The steam turbines convert thermal energy
into mechanical energy causing the rotor to spin. And the generator produces
electrical energy by electro-mechanical interactions in the air gap of the generator
where the total energy is transferred and converted. In case of disturbances in the
electrical generator-grid system besides the nominal air gap torques additional
torques due to electro-mechanical interactions will appear. They depend on
electrical quantities (currents in the rotor- and stator-windings, coupling
inductances) and on mechanical quantities (torsional displacements and velocities),
see figure 1 and formula (1.1).

d nom
My, = _Z W AORAORTO (L.1)
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Figure 1: Air GapTorque due to Electro-Mechanical Interaction [Source: TVO]

The disturbance related air gap torques usually excite high transient torsional
vibrations in the shaft train, which have a relatively low decay rate due to the weak
system damping. Disturbance cases are 2-phase and 3-phase short circuits,
unsymmetrical grid loads (negative sequence current) or also dangerous sub
synchronous resonances. They will be discussed in more detail in chapter 1.4. For a
safe and reliable operation the electro-mechanical interaction processes and the
torsional vibrations of the shaft train should be controlled permanently. To solve
this task, a Digital Twin for monitoring the torsional vibrations can be a well suited
and valuable tool.



1.2 CHARACTER OF TORSIONAL VIBRATIONS OF TURBOGENERATORS

Torsional vibrations of turbogenerators are described by time dependent torsional
deformations q(t) along the shaft line. The torsional vibrations can be determined
by equations of motion, which express the dynamic equilibrium of the time
dependent air gap torques and the inertia, damping and stiffness torques of the
different system components. The linear equations of motion are described by a
model with mass damping and stiffness matrices M, D, K and an excitation vector
Mei for the air gap torque (Figure 2 and formula 1.2).

Torsional Vibrations q(t) Air Gap Torque M I(t)
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Figure 2: Model of Turbogenerator and Equations of Motion for Torsional Vibrations

The components to set up the equations of motion are mainly the cylindrical
elements of the shaft train and the attached turbine blades. The shaft elements
influence the dynamic behaviour with their moments of inertia and their torsional
stiffness. The turbine blades with large moments of inertia contribute mainly to the
inertia terms in the mass matrix. However, the last stage blades in the Low-
Pressure Turbines (LPT) have to be considered as flexible beam elements at higher
frequencies. In this case, the blades form a dynamic rotor-blade interaction system
with the shaft. Furthermore the dynamic behaviour of the blades may depend on
the rotational speed of the shaft train due to stiffening effects by centrifugal forces.

The dynamic behaviour of a turbogenerator can be characterized by modal
parameters, that means by the different torsional natural frequencies with their
corresponding mode shapes. To each torsional natural frequency belongs a
damping value, which is called modal damping. If the modal parameters are
known, the torsional vibration response of the turbogenerator can be presented by
a sum of single degree of freedom (SDOF) systems for an arbitrary air gap
excitation. This type of presentation is known as Modal Analysis.

The torsional damping of turbogenerators is in general very small. The sources are
in the mechanical as well as in the electrical system. However, the most significant
sources of the damping seem to come from the electrical parts of the generator and
the grid, while the contributions from the mechanical turbine shaft (material
damping, friction, steam,..) are very low. The torsional damping is usually
considered as modal damping, which means that each modal damping is related to
one of the torsional natural frequencies. It is important to note, that the modal
damping of the torsional modes increases significantly with the electrical load
when the generator is connected to the grid.



1.3 TORSIONAL NATURAL FREQUENCIES AND MODE SHAPES

If the excitation air gap torques in equation (1.2) are set to zero, we obtain the
homogenous equations of motion for the natural vibrations of the turbogenerator.
Due to the fact, that the damping is very small, we can neglect the damping term.
This leads to the homogenous equations (1.4), in which only the inertia and
stiffness terms M and K determine the free vibrations.

Mq@t) +Dqt) + Kq@) = Ml(t) (1.3)

€

Mq@) + Kq@t) =0 (1.4)

With the mathematical approach (1.5) for the free natural vibrations of the system
and the derivative (1.6) for the acceleration we obtain the Eigenvalue problem (1.7)

q) = @sinwt (1.5)
qgt) = -2 @sinwt (1.6)
(K-w?-M) - =0 (1.7)

The Eigenvalue analysis leads to the torsional natural frequencies wj and to the
corresponding mode shapes j . As an example figure 3 shows the four lowest
natural  frequencies of the OL3  turbogenerator in  Olkiluoto.

Torsional Natural Frequencies: j

Mode Shapes of the Shaft Train: @i

Figure 3: Lowest Torsional Natural Frequencies and Modes of the OL3 Turbogenerator
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1.4 TORSIONAL VIBRATIONS DUE TO AIR GAP TORQUES — DESIGN CASES

In the design process of large turbogenerators, it is common practice to express the
air gap torque due to electrical disturbances by fixed formulas instead of using the
more complicated formula (1.1). This is a conservative approach to the real
vibration behaviour. Experience shows that it is a useful approximation, which is
often also confirmed by experimental results. Usually, the following electrical fault
cases are considered during the design, which have the following excitation

frequencies:

2-phase short circuit 1x grid and 2x grid frequency
3-phase short circuit 1x grid frequency
Faulty synchronization 1x grid frequency
Negative sequence current 2x grid frequency

In the following we consider the simplified air gap torques for the cases of a 2-
phase short circuit and the negative sequence current (unsymmetric grid loads),
which will later also be the test cases for the Digital Twin.

For simplification the presented formula for
the Electrical Air gap torque of a 2 Phase
Short Circuit does not consider the strong
electromechanical Interaction as previously
shown in formula (1)

It is however a good approximation based on
experience for this kind of disturbance.

M,
cos@ xy +Xrp
—0.5-sin20(t — t,)}

M () = Mo +

{sinQ(t — t,)

Figure 4 Assessment of Torsional Vibrations during the Design: 2-Phase Short Circuit

The simplified formula (1.8) shows the electrical air gap torque for a non decaying
2-phase short circuit, which is a conservative assumption. Excitation frequencies
are the single grid frequency 2 and the double grid frequency 2 Q. The formula
contains also some generator characteristics. In reality the air gap torque is
decaying. In figure 5 the 2-phase air gap torques with and without a decay are
presented, see figure 5, left side. The system response for the two cases is shown on
the right side of figure 5. By comparison the conservative assumption for the case
without decay seems obvious. Figure 5 also demonstrates the low decay rate of the
torsional vibrations.

11



Airgap Torque System Response
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Figure 5: Air Gap Torque and Torsional Response with and without decay [Source: R.
Nordmann]

Due to unequal loads in the electrical grid, unsymmetry will occur in the 3-phase
electrical system. By electrical derivatives it can be shown, that due to this fact, the
nominal air gap torque is superimposed by a pulsating torque with double grid
frequency. In a 50 Hz grid system the air gap torque therefore excites the shaft
train with a frequency of 100 Hz, which is a steady state excitation (Figure 6).

Tl T2 MT3 MT4

=

Due to unequal loads in the electrical grid
and possible failures unsymmetry may

occur in the 3 Phase Electrical system. "’””q”"i"”’IH’“ i

Due to this fact the Air gap torque is super-
imposed by a pulsating torque with

douple grid frequency. In a 5Q Hz grid [/\ /\ /\ /\ /\

the air gap torque therefore excites the Shaft
Train with a frequency of 100 Hz. \/ \/ \/ \/ \/ t

L*
s

HV-Bus

3

l_
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Figure 6: Assessment of Torsional Vibrations during the Design: Unsymmetric Load

In general, it has to be considered, that the system response always has two
solution parts: the inhomogeneous solution due to the excitation air gap torque,
which is superimposed by the homogeneous solution with the natural torsional
frequencies. The homogeneous solution (natural vibrations) decays in case of
damping, however in the case of low damping, the decay rate may be very small.
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2 Digital Twin for Torsional Vibrations of
Turbogenerators

In this chapter 2, the basic idea of a Digital Twin will be presented. After
a more general description, the application of a Digital Twin for torsional
vibrations of turbogenerators will be pointed out.

2.1 THE DIGTAL TWIN — A DIGITAL COPY OF THE REAL SYSTEM

A Digital Twin is a digital copy of a real system. The basic idea of such a Digital
Twin is shown in figure 7 for a general system at operation. The deviations
between sensor observations at the real system and predictions from the model of
the Digital Twin are the base for an identification and update of the system
parameters and the operational conditions. The identified system changes can for
example be an indication for internal system failures or external disturbances. The
deviations can also be used to generate signals for an active system control. In
addition, recommendations for experts can be derived from the deviations for a
possible change of operation conditions.

® Digital Twin receives operational
conditions and sensor data from the
system: Observation

® Behavior Model predicts expected state

and behavior of the system: Prediction
Digital Twin B Based on the deviation between
- Prediction and Observation:

Update behavior model, identify
system state or operational condition

ad

uondIpa

recommendation

s — < . .
.g § B Send signal for Active System
(]
g g 8l Control
g = S Prepare information and recommend

activity to Experts

E

Figure 7: Digital Twin for a System at Operation

From figure 7 it can be recognized, that for the function of the Digital Twin, a
relevant model and analysis procedures are needed. With respect to the
development of a Digital Twin for the torsional vibrations of a turbogenerator the
three engineering tools: theoretical modelling, numerical analysis and
experimental analysis are necessary. These tools will be discussed in the next
chapter together with the tasks for the function of the Digital Twin.

2.2 THE TOOLS FOR THE DEVELOPMENT OF THE DIGITAL TWIN

Figure 8 shows the three tools, which are usually applied to solve vibration
problems in mechanical engineering. These tools are besides theoretical modelling
the numerical and the experimental analysis. The theoretical modelling is based on

13



physical laws, particularly from mechanics. They lead to equations of motion,
which express the dynamic behaviour of mechanical systems. By means of
numerical analysis, equations of motion can be solved for natural as well as for
forced vibrations. And vibrations can be measured by experimental analysis with
sensors, actuators and devices for signal processing. By different combinations of
the three tools the following tasks can be performed, which is shown in figure 8:

Simulation: ~ Theoretical Modelling & Numerical Analysis
Validation: =~ Numerical Analysis & Experimental Analysis
Identification: Experimental Analysis & Theoretical Modelling

Modelling for

Design & Operation

Identification

Experimental /N’urn_erical\
GEWES Analysis /

Validation

/

Figure 8: Tools and Tasks to solve Vibration Problems in Mechanical Engineering,

based on [Source: D. J. Ewins. Exciting vibrations: the role of testing in an era of
supercomputers and uncertainties. Meccanica - An International Journal of Theoretical
and Applied Mechanics. DOI 10.1007/s11012-016-0576-y]

In the next two chapters 2.3 and 2.4 it will be shown, that for the development of the
Digital Twin for torsional vibrations of turbogenerators all three tasks simulation,
validation and identification are necessary to achieve the requirements for the
Digital Twin. The concept of the Digital Twin will be presented in chapter 2.3,
followed by the presentation of the components and their interaction in chapter 2.4.

2.3 CONCEPT OF THE DIGITAL TWIN FOR TORSIONAL VIBRATIONS

The concept of the Digital Twin for torsional vibrations of turbogenerators is
presented in figure 9. The real system of the turbogenerator (black frame) is excited
by air gap torques leading to real torsional vibrations along the shaft train. Some of
these vibrations are measured by sensors at defined locations. These sensor signals
are input data for the Digital Twin of the turbogenerator (blue frame). They are
transferred to the internal difference location.

An important part of the Digital Twin is a model, in this case a Finite Element
Model: 1. With this FE Model, natural vibrations as well as forced torsional
vibrations due to the excitation can be calculated at each location along the shaft
line. The part of the calculated torsional vibrations corresponding to the sensor
positions is also transferred to the difference location: 2.

14



Real System of Turbogenerator

Excitation M(t) i J!-'-t E Real vibrations q(t)
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Model and the E Feedback for Model <
Excitation -~
T — e INput fromthe Digital Twin qp (t)
b % ® ® ® ® s o ~
Excitation )

Finite Element Model Calculated vibrations qp (t)

Digital Twin of the Turbogenerator

Figure 9: Concept of the Digital Twin for Torsional Vibrations of Turbogenerators

The differences between the measured and the calculated vibrations are introduced
via feedback into the calibration component of the Digital Twin. The feedback and
the calibration are subdivided into two parts, one for calibrating the system
parameters of the model (3) and one for the excitation (4). This is necessary since
the torsional vibrations as a system output can be influenced either by the
excitation (system input) or by possible changes of the system parameters. If the
Digital Twin works without problems in the way of the described concept, the
state of the torsional vibrations of the turbogenerator can be determined at any
time of operation and at any location of the FE model. Besides the torsional
vibration, other derived quantities like stresses, torques etc can be determined as
well. In figure 9 the four components of the Digital Twin are marked by their
numbers: 1. Finite Element Model of the turbogenerator, 2. Comparison point of
the Digital Twin (Difference of measured and calculated vibrations), 3. Calibration
of the mass and stiffness matrices and calibration of the modal damping and 4.
Calibration of the air gap torque. These components are described in more detail in
chapters 3to 7.

15



3  Finite Element Model of the Digital Twin
(Component 1)

For the development of the Digital Twin, the first component has been
built up as a Finite Element Model of the turbogenerators shaft train (see
Figure 9). The Energiforsk steering group decided, that as a test case in
this research project the first Digital Twin should be developed for the
unit OL3 Turbogenerator in Olkiluoto.

3.1 THE FINITE ELEMENT MODEL FOR TORSIONAL VIBRATIONS

In chapter 1.2 it has already been discussed that the torsional vibrations can be
described by a model with mass- damping- and stiffness-matrices M, D, K and an
excitation vector Me for the air gap torque. The equations of motion (2) are
repeated here as equation (3.1):

Mq®) +Dq(®) + Kq(t) = M (® 3.0

€

The elements to set up the equations of motion are mainly the cylindrical elements
of the shaft train (chapter 3.2) and the attached turbine blades (chapter 3.3). The
cylindrical shaft train elements as shown in figure 10 for a general turbogenerator,
influence the dynamic behaviour with their moments of inertia in the mass matrix
M and with their torsional stiffness in the stiffness matrix K.

F—%‘ %‘ %‘Z‘ General Turbogenerator with
Turbines and Generator
i i 1 ¢ i 1502 ¢

Finite Element Model

Cylindrical Element of
Shaft Train with Polar
Moment of Inertia and
Torsional Stiffness

Figure 10: General Turbogenerator and Finite Element Model with Cylindrical Elements

The original model was first set up in MADYN2000, which provides all necessary
basic modeling functionalities. A disadvantage is however that the system matrices
(stiffness, mass and damping properties) are not available and cannot be changed
programmatically. This provides a major restriction for the Digital Twins
adaptability. Therefore, the modeling is changed to an implementation by
Fraunhofer LBF, in this case realized in MATLAB, where all the geometry data of

16



the MADYN model are used. The process of reading MADYN data is automated,
so it can be repeated for other models.

In MATLAB, a much better insight in the model is possible, so every parameter can
be changed and automated procedures with changing parameters in programming
loops are possible. Especially the system matrices are available and can be
changed. Part of the global system matrices are the local system matrices — the so-
called substructures. These can also be changed independently, which is a big
advantage when implementing fault scenarios at certain parts of the rotor.
Furthermore, there are much better possibilities to share the data for other users.

The MATLARB finite element model is composed of a coupling of torsional spring-
damper elements with mass properties at the degrees of freedom. The Finite
Element for the single substructures is derived from literature. Each substructure
has two torsional degrees of freedom that are coupled with one another. The
coupling of the single substructures is done using an addition of the single
substructures according to the global degrees of freedom in the rotor. In this way,
the global matrices (Mass, stiffness) are obtained.

The model is transformed to a modally reduced form using the well-known
approach of modal transformation and truncation. In this way, the model’s degree
of freedom could be reduced, so it becomes more efficient in simulation. This can
become relevant for larger models but in this case also the full model is fast to
compute since it does not have a lot of degree of freedom.

Finally, a good agreement with the Madyn model (FRF-comparison) was observed
underlining the approach being reasonable.

3.2 MASS AND STIFFNESS OF THE TURBOGENERATOR SHAFT TRAIN OL3

The mass matrix M and the stiffness matrix K of the overall shaft train consist of
the matrices of the cylindrical elements of the shaft and the mass and stiffness
contributions from the blades (chapter 3.3). In a first step we consider only the
element matrices Kn and M of the cylindrical shaft elements (n=1,2,....N). They
are also known as local stiffness and mass matrices for each Finite Element. Due to
the fact that each shaft element has two torsional degrees of freedom (each on one
side), Kn and Mh are simple 2x2 matrices. They can be derived for each of the
elements with approach functions via the principle of virtual work:

1/3 1/6

K= G [ T 62 M-l [1 e 1 /3] (3.3)

The necessary geomety and material data for each cylindrical element n are the
following:

I [m ] Shaft length of element

It [ m# ] Torsional moment of inertia (GIr/l Torsional stiffness)

17



il [kgm] Polar moment of inertia per unit length (mass effect)

G [N/m2] Shear modulus of the material

HP (S70) LP1 (L2x30) LP2 (L2x30) LP3 (L2x30) Generator + Exciter

\Y

|

1 2 3 4 5 6 7 8 9 10 1"

550 1905 2500 2500 220

F 6280 —— 10000 —1 10000 f—1 10000 — 3650 F—— 13640 ——}— 7243 41
68488

Figure 11 Geometrical Data for the OL3 Turbogenerator

The geometrical data in terms of length and diameter (Figure 11) and the material
data for the local matrices Kn and Mn were delivered by TVO. The inner and outer
diameters of the shaft elements were described in a separate table, which is not
shown here. These diameters are needed to calculate the torsional moments of
inertia It and the polar moments of inertia {l.

By superposition of all shaft elements, we obtain a first part of the two global
matrices K and M of the Turbogenerator shaft train. Due to the chain arrangement
of the shaft elements, the two matrices have a band-structured shape, which has
advantages for the numerical calculations.

3.3 MODELLING OF THE TURBOGENERATOR WITH LAST STAGE BLADES

The turbine blades with large moments of inertia contribute mainly to the polar
moment of inertia terms in the mass matrix M. However, the last stage blades in
the Low-Pressure Turbines (LPT) have also to be considered in the stiffness matrix
K as flexible beam elements in the frequency range between 30 Hz to 120 Hz. In

this range the blades form a dynamic rotor-blade interaction system with the shaft.

Furthermore, the dynamic behaviour of the blades may depend on the rotational
speed of the shaft train as well due to stiffening effects by centrifugal forces.

Unfortunately, it was not possible to obtain the exact geometrical data for the last
stage blades of the LPT’s to model the dynamic rotor-blade interaction. This is

especially a disadvantage for modelling the stiffness behaviour of the blades. The
only data we could receive for the last stage blades are related to the inertia terms:

e Mass of one blade including the root part mu 272 kg
e Radius of the center of gravity of one blade Rc 2156 m
e Number of blades in the LPT last stage row 44
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The part of the polar moment of inertia for the flexible last stage blade row is
therefore:

Ouss = mvi x Rec x 44 = 55631 kg m?2

This inertia term has to be considered for each last stage blade row, when the
dynamic rotor blade interaction is modelled with stiffness and inertia effects.

In Table 2 the total polar moments of inertia are presented for the different rotor
parts of the OL3 shaft train. These values include all inertia terms of the shaft train
and the blades as well. When creating the mass matrix M for the complete system
it has to be considered, how the inertia terms are distributed to the parts of the
shaft and the blades.

To consider the dynamic rotor blade interaction of the six last stage blade rows of
the LPT’s in an optimal way, we developed a simplified model (see figure 12),
based on the following assumptions: When the blades are excited by the torsional
motion of the shaft, the blades will vibrate mainly in a bending mode in tangential
direction. All blades will vibrate with the same phase. If all blades vibrate only in
their first bending mode, the simplest model for the complete blade row would be
a ring with a polar moment of inertia, which is connected to the rotor by one
torsional spring.

Rotor Length | Mass m Polar Moment of Inertia O,
[mm] (k] [kgm?]

HP 7685 96670 37601

LP1 12500 322852 427799

LP2 12500 322852 427799

LP3 12500 322852 427799
Generator 16775 250678 100017

Exciter 6528 25303 3965

Table 1: Length, Mass and Polar Moment of Inertia of the Rotors of the OL3 Shaft Train
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Mass inertia of the
outer blade ring (6,)

Torsional Stiffness k2

Mass inertia of the
inner blade ring (9,)

Torsional stiffness k1

Main shaft of Turbogenerator
with Last Blade Row

Figure 12 Modelling of the LPT Last Stage Blade Row by a simplified TDOF Model

Experience showed that this model was not sufficient to lead to good results. The
model has therefore been extended to a Two Degree of Freedom (TDOF) model,
consisting of two rings with polar moments of inertia ©1 and ©2 and two torsional
springs with torsional stiffness values k1 and k2. This model is shown in figure 12
together with the last stage blade row of the turbogenerator OL3.

To obtain an optimal FE-Model for the turbogenerator with the above described
effects (e.g. rotor-blade interaction, etc.) numerical calculations for the torsional
natural frequencies and the corresponding mode shapes were performed and
compared with existing results from the manufacturer of the turbogenerator. Later
on, the calculated results have also been compared with measured results. The
process of the model development was performed by a Sensitivity analysis (see
chapter 5.1), in which the parameters of the model could be identified and adjusted
by comparison of the calculated natural frequencies and the corresponding
reference values from the manufacturer. During the identification procedure the
mass- and stiffness-parameters of the shaft train did not change very much. The
parameters of the TDOF model for the attached last stage blades had finally the
following values for the adjusted model:

Polar Moment of Inertia Torsional Stiffness
O1 = 37086 kgm? ki = 6,4e+09 Nm/rad
©:2 = 18543 kgm? ke = 3,2e+09 Nm/rad

Table 2: Polar Moment of Inertia and Torsional Stiffness of Blade Model

With the identified matrices M and K, we have a validated FE-Model, which
describes very well the inertia and stiffness characteristics of the OL3
turbogenerator at normal operation. With this Base Model of the Digital Twin, we
can already determine very well the torsional natural frequencies and mode shapes
of the turbogenerator shaft train including the interaction with the blades at
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normal operating conditions. Damping in the turbogenerator is very small and can
therefore be neglected when calculating the natural frequencies and mode shapes.
However, we will come back to mechanical and electrical damping later, when
damping becomes the resistance to excitation.

34 NATURAL FREQUENCIES AND MODE SHAPES OF THE BASE MODEL

The developed FE-Model for torsional vibrations of the OL3 Turbogenerator is
shown in figure 13. As described in chapter 3.3 it considers the inertia and stiffness
effects of the shaft train and the turbine blades. As a special feature the rotor-blade
interaction has been considered in the model at the six last stage blade rows of the
three LPT’s. The dynamic characteristic of this Base Model is determined by the
stiffness matrix K and the mass matrix M for normal operation conditions.

HPT LPT1 LPT2 LPT3 GENERATOR

Radius [m]
[

<l e fearTe—
T T T T T T T T
0 10 20 30 - 40 50 60 70

Figure 13 FE-Model of the OL3 Turbogenerator with Turbines and Generator

As already shown in chapter 1.3 we can solve the Eigenvalue problem (3.4)

(K-w?2-M)-@p=0 (3.4)

to obtain the circular torsional natural frequencies wj [1/s] and the corresponding
torsional mode shapes ;. The torsional natural frequencies in Hz can be determined
by

fi=wj/ 2m [Hz]. (3.5)

3.5 COMPARISON WITH RESULTS FROM THE MANUFACTURER

Figure 14 shows the 18 first torsional natural frequencies in Hz up to the frequency
of 80 Hz, which were calculated with the Digital Twin Base Model. The natural
frequencies have been compared with the design natural frequencies of the
manufacturer (Reference). The frequency values of the Digital Twin FE-Model are
in good correlation with the reference values. The error in [%] is less than 2 % in
the whole frequency range up to 80 Hz. This promises a good performance of the
Digital Twin in the required frequency range.
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Figure 14 Torsional Natural Frequencies f; [Hz] of Turbogenerator OL3 and Error [%]

3.6 COMPARISON WITH RESULTS FROM MEASUREMENTS

During commissioning of OL3, first torsional natural frequency measurements
were taken at the turbogenerator at normal operation. In Table 3 these measured
natural frequencies are compared with calculated values from the FE-Base-Model.

No. FE-Model Digital Twin Measurement at OL3 Error [%]

1 5,90 Hz 5,67 Hz + 40 %
2 10,90 Hz 10,62 Hz + 26 %
3 14,60 Hz 14,37 Hz + 1,6 %
4 24,00 Hz 23,24 Hz + 1,0 %
5 38,28 Hz 35,61 Hz +10,3 %
6 39,10 Hz 39,28 Hz - 04 %
7 40,52 Hz 40,24 Hz + 07 %
8 57,65 Hz 55,88 Hz + 32 %
9 58,55 Hz 60,59 Hz - 34 %
10 65,88 Hz 64,90 Hz + 1,5 %

Table 3 Comparison of Measured and Calculated Torsional Natural Frequencies fj [Hz],
[Source of Measurement eigenfrequencies: TVO]

As can be seen in the frequency spectrum from 0 to 70 Hz at normal operation
(figure 15 and 16) the four first torsional natural frequencies could be identified
very well. And the comparison with the calculated natural frequencies from the
FE-Base Model is also quite good. At higher frequencies (30 — 70 Hz) the peaks
could still be identified by measurements, although the signal to noise ratio is not
optimal. With the exception of the calculated natural frequency 38,28 Hz with an
error of 10 % all other frequencies can well be predicted by means of the FE-Base
Model with deviations in the range of 1% to 3 %. As a conclusion, the FE-Base
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Model predicts very well the torsional natural frequencies of the turbogenerator
OL3 in the required frequency range. This statement can also be confirmed by
another comparison of calculated and measured torsional natural frequencies in
figure 16. In comparison to measurements figure 16 shows a clear and accurate
presentation of the dynamic behaviour of the turbogenerator by means of the FE-
Base Model.
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s e7a v
) |1°62HZ (10,9Hz) 14,377 Hz (14,6 Hz)

/

1 ¢ - 23,238 Hz (24,0 Hz)

Figure 15: Measur 10 20 30 40 50 60 70 £ [Hz]
VIT/TVO]
) 5.9 Hz 10.9 Hz 23.8 Hz 38,39,40 Hz 57-58 Hz 78, 80 Hz
‘\ ‘ “ 11"5 Hz | ‘ 65-66 Hz 75 Hz

102 N

/

L]

Amplitude in rad

I
I | 1 1 L1 I I ( I
0 10 20 30 40 50 60 70 80
Frequency in Hz

10° T T T T j—z
E 5.8 Hz I25 Hi Bearing 4, SG 1/ 3

E 10.8 Hz saa '_*

>F 4 Hz E|
102k T /“\ 35,39,40 Hz 50 Hz 75 Hz 100 Hz

Strain in MPa

AN | 64 Hz ’
e = ‘ I

1 I I I 1 == ! |

30 40 50 60 70 80 90 10

Frequency in Hz

0

Figure 16: Comparison of Measured and Calculated Torsional Natural Frequencies fj [Hz]
of the Turbogenerator OL3 in the frequency range up to 100 Hz [Source: VTT]

3.7 DAMPING OF THE BASE MODEL

From chapter 3.4 we learned, that the torsional natural frequencies wj and the
corresponding mode shapes ¢j can be calculated very accurately, if only the mass
matrix M and the stiffness matrix K are known. The damping matrix D is not
needed for the determination of wj and ¢j, because the damping of turbogenerators
is very small and has nearly no influence on the modal parameters wj and ¢;.
However, damping becomes important when torsional vibrations of a
turbogenerator due to air gap torque excitations have to be investigated. In case of
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resonances, particularly in the case of Sub Synchronous Resonance (SSR), positive
damping of any size helps to stabilize the vibrations. Damping should therefore in
any case be considered, when forced torsional vibrations are investigated.

The damping of the combined mechanical-electrical vibration system consists of
two parts: the mechanical damping of the turbogenerator shaft train and the
electrical damping from the generator and the grid. It is well known that the
mechanical damping (material, steam, blade joints) of the shaft train is small
compared to the electrical damping. It has also to be considered, that the
mechanical damping as well as the electrical damping depend on the electrical
load of the turbogenerator.

In chapter 3.8 it will be shown, how forced torsional vibrations due to time
dependent air gap torques can be calculated by means of the numerical Modal
Analysis. The Modal Analysis procedure decouples the originally coupled Multi
Degree Of Freedom (MDOF) equation system (8) of order N into N Single Degree
Of Freedom (SDOF) systems, each consisting of a modal mass, a modal stiffness a
modal damping and a modal excitation vector. While modal mass and modal
stiffness can easily be determined by means of the orthogonality relations of the
mode shapes ¢j (chapter 3.8), the determination of modal damping needs
experimental support via measurements. This can be done either in the time
domain, considering the decay rate of transient natural vibrations or in the
frequency domain by the method of the Half Power Bandwith (HPB).

In figures 15 and 16 Frequency Response Functions (FRFs) can be seen for the
turbogenerator between two positions, e.g. between the air gap (input) and one of
the SSR sensors (output, see also chapter 4.1). If the resonances or the torsional
natural frequencies in the FRFs are not to close to each other, each resonance peak
can approximately be considered as a peak of a SDOF-system, and we can apply
the Half-Power Bandwith method for the identification of the modal damping D.
The procedure for a SDOF vibration system is explained in figure 17. If a
Frequency Response Function V = §/ F of a general SDOF system has been
measured, we can determine the resonance frequency wj and the maximum value
Vmax at this frequency. Based on these values the frequency difference Aw can be
determined at the amplitude of the FRF: Vinax/v/2. By some theoretical derivatives it
follows, that the modal damping D can be determined by the simple equation:

D=Aw /2w (3.6)
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Figure 17: Half Power Bandwith Method for the Determination of the Modal Damping D
[Source: R. Nordmann, Machine Dynamics]

The described procedure of the HPB-method has been applied for the four lowest
torsional natural frequencies fi — f1 of different frequency spectra, measured by
VTT at the sensor locations of the OL3 turbogenerator (see chapter 4.1). The data
were taken for the test cases Turbine trip 0 MW, Generator load 850 MW, Power
ramp down 1040 MW and Power ramp up 1510 MW.

The measured values of the modal damping as function of the power of the
turbogenerator are presented in figure 18 and table 3 for the four lowest torsional
natural frequencies fi -f4 in Hz. They are in the range of D =4,9 e-4 to 27,9 e-4 or in
percentage D [%] = 0,049 to 0,279 %. These values are very low. The diagram shows
an increase of the modal damping with power. However, a decrease of the
damping values at around 1000 MW was not expected and could not be explained
up to now. This needs additional investigations. However, at this stage the
damping values in figure 18 and table 3 were used for the further analysis with the
base model.

Since the quality of the measured frequency spectra data was not very good in the
higher frequency range, the evaluation of modal damping values was not
satisfying. Therefore, for all higher modal damping values, an estimated value of D
= 0,001 or in percentage D [%] =0,1 % was assumed for the Base Model.
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Figure 18: Modal Damping D versus Power for the Torsional Frequencies f1 -f4

f1=5,67 Hz f2=10,62 Hz f; =14,37 Hz f4= 23,24 Hz

Power
0 0,00094 0,00096  0,00056  0,00049
850 0,00279  0,00117  0,00139  0,00053
1040 0,00130  0,00094  0,00099 0,00117
1510 0,00097 0,00103 0,00119  0,00167

Table 3: Modal Damping D versus Power for the Torsional Frequencies {1 — f4

3.8 FORCED TORSIONAL VIBRATIONS WITH THE BASE MODEL

In this chapter, it will be shown, how forced torsional vibrations due to time
dependent air gap torques can be calculated by means of the numerical Modal
Analysis method. We start with the coupled equations of motion (3.9) for the
turbogenerator, which have already been described in chapters 1 and 3.

Mq(t) + D)+ Kq(t) = Mel (t) (3.9)
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The Modal Analysis procedure decouples the Multi Degree Of Freedom (MDOF)
equation system (3.9) of order N (N number of degrees of freedom) into N Single
Degree Of Freedom (SDOF) systems, each one consisting of a modal mass, a modal
stiffness, a modal damping and a modal excitation vector. This decoupling of the
equations of motion can be achieved by a development of the torsional
displacement vector q(t) in terms of the eigenvectors (n of the system without
damping (see chapters 1.3 and 3.4 and equation (3.10)).

q(t) = Xh=1 Pa(t) @n (3.10)

We introduce equation (3.10) into equation (3.9), multiply from the left side with a
transposed eigenvector @kT and obtain the following equation (3.11)

N .. .
21 (@kM@y By (0 + kD @Dy (O + kKo (D) = @i M_ (© (3.11)

In the theory of vibrations, it is shown that due to the orthogonality character of
the eigenvectors (n the following eigenvector products are defined

@M@, = mcfork=n and @fM@,=0 fork#n (3.12)

@ K@, =k« fork=n and ¢@iKe,=0 fork#n (3.13)

where mx is the so called modal mass and kk is the modal stiffness, both of them
belong to the natural torsional eigenfrequency f« or wx (subscript k). If the
assumption is made, that the damping matrix D is proportional to K and M
(Rayleigh-Damping) , than the following relations are also true for the damping

@.D@,=dc fork=n and ¢@iD@,=0 fork#n (3.14

With the introduced modal quantities mx, dx , kk we can now write down the N
decoupled SDOF equations, which belong to the different natural frequencies wx

mk Pr(t) + di pr(t) + ke pe(t) = @T M (t) k=1,23,....) (3.15)

On the right-hand side of each SDOF equation the scalar vector product @xT Mei (t)
describes the time dependent excitation. By means of this vector product it can be
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found out how strong the torsional vibrations can be excited in a resonance at wx.
The other important factor in a resonance is the damping. For the damping, we can
introduce the modal damping values from chapter 3.7. The relation between the
modal damping Dxand the damping dx from equation 3.15 is

Di = di/(@mrax) = di/2 Vkimy) (3.16)

When the equations 3.15 as SDOF equations have been solved, the results px (t) can
be introduced in equation 3.10 and the solution for the complete vector q(t) with
the torsional displacements can be obtained.

As an example, in figure 19 the torsional response amplitudes in rad are shown for
the location of the sensor position 8 between the LPT3 and the generator (see figure
23 in chapter 4.2), when the OL3 turbogenerator is excited by a harmonic unit air
gap torque in the frequency range between 0 and 100 Hz. In figure 19, we clearly
see the different modal contributions of the different natural frequencies and
modes. The resonance peaks are relatively sharp due to the very low damping
values.

With component 1, the Finite Element Model of the turbogenerator, the most
important component of the Digital Twin has been developed and can be used.

Modal Contributions to the Frequency Response Function

OUT:1 | IN:1

Amplitude in rad

ouT:2|IN:2
OUT:3|IN:3
ouT:4 | IN:4
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| OUT6 | IN:6
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Figure 19: Torsional Response Amplitudes [rad] due to Harmonic Unit Air Gap Torque
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4 The Comparison Point of the Ditigal Twin
(Component 2)

The second component of the Digital Twin is the Comparison Point 2.
The comparison point has two inputs. The first input contains measured
data from the real system of the turbogenerator and the second input
delivers corresponding data from the Finite Element Model. The
difference of the two inputs is the output of the comparison point. This
difference will be transfered to the components 3 and 4 for calibration
(Figure 20) of the Finite Element Model (Model parameters and
excitation).

Real System of Turbogenerator

Excitation M(t) ! —me E Real vibrations q(t)
¢
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>
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for Digital Twin
Model and the
Excitation

Difference

q® —qp((®
Feedback for Model — <—

e ot e v Y Input fro"{the Dlgital Twin qD (t)

b @ 3 3 @ ® wm w

Excitation Calculat d ibrati t
Finite Element Model alculated vibrations qp (t)

Digital Twin of the Turbogenerator

Figure 20: Comparison Point of the Digital Twin for measured and calculated vibrations

4.1 THE MEASURED TORSIONAL VBRATIONS OF THE SHAFT TRAIN

The measurement of torsional vibrations at the real turbogenerator system is
performed outside of the Digital Twin (Figure 20). It is therefore not a part of this
research project. However, some comments are presented here to understand, how
the Digital Twin could work in a real Nuclear Power Plant environment including
the measurement part.

For the measurement part outside the Digital Twin, a Data Logging system can be
used. It is an automated tool to collect, store and analyse data. The key components
of a Data Logging system are:

Sensors: To detect and measure physical properties such as torsional vibrations of
the turbogenerator shaft train or stresses of the material.

Data Logger: A device that collects data from sensors and stores these data. Data
Loggers can be integrated into other systems.
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Storage: The data can be stored internally in the logger or transferred to external
storage like a computer.

Software: Used for the configuration the data logger, visualizing and analysing the
collected data.

A Data Logging system is therefore an important tool to monitor the vibration data
of a turbogenerator, particularly also for the very sensitive torsional vibrations. In
the context of the Digital Twin for turbogenerators, the Data Logging system is a
very important tool in collecting real time torsional vibration data from the
sensors. This data will be transferred to the comparison point of the Digital Twin
and will be used to adjust the Digital Twin. Continuous data collection ensures
that the Digital Twin accurately reflects the current state of the real turbogenerator.

The Data Logging system is not a part of this project. Therefore, we will not
describe the system in more detail. However, in different reports from VIT, more
information about the Data Logging system for the OL3 unit can be found.

During the commissioning phase of the turbogenerator OL3, the permanently
installed SSR sensors from Siemens were used to measure torsional vibrations. In
Figure 21, some details are explained about this sensor type. It uses the anisotropic
magnetostrictive measuring principle, where stresses at the material surface can be
observed in a change of magnetic permeability. High stresses and frequencies up
to around 200 Hz can be measured in this way. In addition, strain gauges were
installed by VTT for the commissioning phase only. They are no longer available
for future measurements.

—Oy t0x
Mt<:" ----- % ______ :» M,
+0, ~0oy

The Touchless Torque Sensor measures the static and dynamic torques
(stresses) at the rotating turbogenerator shaft train. It is based on the influence of
mechanical stresses on the magnetic permeability of ferromagnetic materials.

Figure 21: Monitoring of Torsional Vibrations with the SSR Torque Sensors — Siemens
[Source: Ingo Balkowski, Siemens: Direct Touchless sensing of torsional vibration stresses
in Power Plants, EF Vibration Seminar 2023]

The location of the two sensor types during the commissioning phase are shown in
figure 23. The strain gauges (blue arrows) have been installed at the locations 4, 6
and 8 and the SSR sensors (green arrows) at the locations 3, 5 and 8. The probably
most important sensor point is 8, which is between the LPT3 and the Generator.
Examples of measured torsional vibrations have been presented in the frequency
domain in figures 15 and 16 (see chapter 3.6).

30



4.2 THE CALCULATED TORSIONAL VIBRATIONS OF THE SHAFT TRAIN

Calculated torsional vibrations at the corresponding measurement points (sensor
locations) are the second input for the comparison point. How the torsional
vibrations of the turbogenerator shaft train can be determined by calculations with
the Finite Element Model has been demonstrated in detail in chapter 3. This is
possible for all locations of the Finite Element Model. In Figure 23, the essential
calculation possibilities are highlighted again.

Output: Angle, Angular velocity, mechanical
stress at ,,strain gauge sensor positions 4, 6 & 8

l Air Gap Torque
4

30
1-Dir [m)

- Torsional Natural Frequeﬁcls & Modes = fTSﬁness & Inertia of Mechanial System)
- Modal Damping = f (Mechanical system (weak) & Electrical system (strong))
- Air Gap Torque = f ( Electrical System & Mechanical System)

- Torsional Vibration Response (Shear stresses) = f (Air Gap Torque, Stiffness & Inertia)

Figure 22: Calculation of Torsional Vibrations by means of the Digital Twin FE-Mode

4.3 DIFFERENCE OF MEASURED AND CALCULATED VIBRATIONS

As has been shown in figure 20 at the comparison point 2 of the Digital Twin
(Comparison point), the measured and calculated torsional vibrations can be
compared for locations of the shaft train, where vibration sensors are installed (see
figures 22 and 23). For this comparison, measured and calculated values should
have the same physical quantity, e.g. torsional displacements, strains or stresses of
the shaft train. Due to the fact, that the installed sensors measure shaft stresses or
strains, relations have to be known between the different physical quantities.

The conversion from torsional strain € to shear stress T and the shaft torque M: can
be calculated with the following equations:

Shear (Torsional) Stress T=M:/Wp 4.1)
Torsional Moment of Resistance Wpr=m D3/16 (4.2)
Torsional Strain e=1+v)M/(EWp) (4.3)

v, E and D are the poisson's ratio, the Young’s modulus and the diameter of the
shaft.
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5 The Calibration of the Mass and Stiffness
Matrices of the Shaft Train (Component 3)

The calibration of mass and stiffness parameters of the turbogenerator is
based on measured and calculated torsional vibrations. The differences
between the calculated and the measured torsional natural frequencies
indicate possible changes of masses or stiffness values. A procedure is
described, how these frequency differences are used for the calibration.
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Figure 23 Component 3 of the Digital Twin Calibration of Mass and Stiffness

5.1 SENSITIVITY ANALYSIS FOR THE TORSIONAL NATURAL FREQUENCIES

In chapter 1.3 it has been shown, that the torsional natural frequencies wi depend
on the mass matrix M and on the stiffness matrix K. From this it can be concluded
that a change of the natural frequencies can be considered as some change of mass
and/or stiffness parameters. For the introduced Base FE Model at normal operating
conditions, the system matrices M and K, the natural frequencies wi and the mode
shapes @i are known from the design, from measurements during the
commissioning phase and from latest measurements during normal operation.
Therefore, the question arises how possible parameter changes AM and /or AK can
be determined from measured deviations of the torsional natural frequencies
related to the Base Model for normal operation. This calibration task is performed
in the component 3 of the Digital Twin (see figure 24). It is based on a Sensitivity
Analysis for the torsional natural frequencies. The idea of the calibration is, that the
torsional natural frequencies will change more or less, when the system parameters
like mass and stiffness values will change.

The eigenvalue problem from chapter 1 is repeated in (5.1) for the natural
frequency w; and described with the substitution A; = w? in equation (5.2). This
eigenvalue equation can be derived according to any system parameter px, where
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px can be a mass parameter or a stiffness parameter as well. The result of this
partial differential derivation is shown in formula (5.3).

(K- wizM) - @i = 0 (5.1)

(K-4M)- i

0 (5.2)

Aik = @T(-AiM,« + K, «) @i (5.3)

As a sign for the partial derivative of a quantity (shown here as braces) according
to px we have used the short form, shown in (5.4)

3( )/ dpi=( ) (5.4)

In equation (5.3) it is also assumed, that the eigenvectors are normalized to 1
corresponding to equation (5.5)

@TMe@i = 1. (5.5)

The partial derivation of an eigenvalue 4i according to a system parameter px in
(5.3) is called the Sensitivity, which can be expressed as

Sic = Ak = A(L)/ dpx. (5.6)

The change of an eigenvalue Ai due to changes of a set of system parameters px can
be expressed by a Taylor series. A good result can often be achieved with a linear
approximation (5.7). The A quantities for the eigenvalues and the parameters
indicate the deviations related to the normal operation

Adi = At Ap1 + Ai2 Ap2 + AizAps +...... + ik Apk (5.7)

If we consider several eigenvalues (i =1, 2....I) and several parameters (k =1, 2..K)
the relations between all changed eigenvalues and the changed parameters can be
expressed by the two vectors A 4 for the I eigenvalues and Ap for the K system
parameters. The IxK matrix S contains the sensitivities (see 5.3 and 5.6)

AA = S Ap (.8)

From the measured eigenvalue changes A4 and the known sensitivity matrix S for
the normal operation condition, the parameter changes Ap can finally be
determined by an inverse calculation.
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5.2 THE CALBRATION PROCEDURE FOR MASS AND STIFFNESS

The calibration procedure, which has been implemented at the Fraunhofer Institute

is shown in the Block diagram in figure 25. It describes the iterative procedure to

find out mass and stiffness parameter changes in case of changes in the measured

spectrum of the natural frequencies.

TurboGen Model
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A = A(D0)

!

Sensitivity matrix S;

!

Gain matrix G;

Am

Residuum
ri=2n— 4

)

Pis1=Pi +Gi1y

|
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K(@Pi+1)

] converged?

lup yPups ==+

correlation

Figure 24: Calibration Procedure for Mass and Stiffness Parameters of the Turbogenerator
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6 The Calibration of the Modal Damping
(Component 3)

Besides the possible changes of mass and stiffness values during
operation of the turbogenerator, the modal damping values may also
show variations due to different effects: Power change, disturbances in
the electrical system, SSR, etc. In such cases, the modal damping has to
be calibrated as well during operation (Component 3 in Figure 24).

6.1 THE HALF-POWER-BANDWITH METHOD

The Half Power Bandwith method to determine the modal damping has already
been explained in chapter 3.7. The same method will also be applied, when the
modal damping of the different mode shapes is changing during the operation
compared to the Base Model (see figure 26)

IA Vmax

P b= T T
l F V = q / F ) '
f/:‘; |

| Aw ————— ViadlV2

m | ]a : —= —!

& 1 =\ -
- l "'/,5| |

v

mg+dq +kg=F w Frequency

D=d/(2vmk D= Aw/ 2w,

Figure 25: Half Power Bandwith Method for the Determination of the Modal Damping D
[Source: R. Nordmann]

6.2 THE CALIBRATION FOR THE MODAL DAMPING AT OPERATION

During operation of the turbogenerator the modal damping values can be checked
continuously by using the Half Power Bandwith method for the actual measured
sensor signals, presented in the frequency spectra. It is important to note again,
that the modal damping consists of two parts: mechanical damping and electrical
damping with a dominance of the electrical part. The cause of changes of modal
damping during operation of the turbogenerator will therefore in the most cases an
electrical event. The variation of the Power is one example, where modal damping
changes. Another very important case is an SSR-event, which may lead to a strong
variation of the damping. In a worst case the modal damping may also become
negative, which means instability for torsional vibrations of the shaft train.
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As an example, for the calibration of the modal damping during operation the
procedure has been tested with a simulated measurement signal, in which the
modal damping of the 2nd torsional natural frequency at 10,9 Hz has been reduced
to 20 % of the original damping D = 0,001 (D [%] = 0,1 %, figure 27).

» Modal damping of the torsional natural frequency at 10,9 Hz has been reduced in a
simulated test signal (measurement) to 20 % of the original value D = 0,001 (Figure 18)

= Using halfpower-bandwith method for determination of the changed modal damping

= Digital Twin calculates the correct change in damping for the simulated test signal

075 108 1085 109 1095 11
frequency in Hz

105 114 1115

Bearing

4

6

8

Initial lated  Changed Calcul
dampi (initial) damping (reduced)
0,001 0,00021
0,001 0,001 0,0002 0,00021
0,001 0,00021

Figure 26: Calibration of the Modal Damping for the 2" Torsional Natural Frequency

By applying the half power bandwith method according to the generated test
signal, the changed modal damping value could be identified very well, leading to

the new value of D =0,00021 (D [%] = 0,021 %).
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7 Calibration of the Air Gap Torques
(Component 4)

The change of the torsional vibration behaviour of the turbogenerator
can be caused either by parameter changes AM, AK and AD or by a
change the Excitation, e.g. by the Air Gap Torque. In this chapter we
describe, how the identification of a change of the Air Gap Torque can be
recognized, based on the measured sensor signals (Component 4 in
Figure 27).
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|
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L b i e, | INPUL fron{the Digital Twin qp (t)
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Excitation Calculated vibrations qp (t)

Finite Element Model

Digital Twin of the Turbogenerator

Figure 27 Component 4 of the Digital Twin: Calibration of Air Gap Excitation

7.1 COMPARISON OF CALCULATED AND MEASURED SHAFT STRESSES

It has to be mentioned again, that shaft stresses are measured by means of the SSR
sensors. Therefore, at the Comparison Point the calculated values by means of the
FE Model have also to be shaft stresses. Equations (4.1 — 4.3) in chapter 4.3 are used
to calculate the shaft stresses with the FE-Model.

7.2 THE CALIBRATION PROCEDURE FOR THE AIR GAP TORQUE

One possibility to identify the actual Air Gap Torque during normal operation or
in a special excitation event (Short circuit, negative sequence current, SSR, ...)
could be via measurements of electrical quantities, which influence the Air Gap
Torque (see equation 1.1 in in chapter 1.1). In the Digital Twin development
another procedure was used, which works with the measured and calculated shaft
stresses, which are compared at the Comparison Point 2 (see Figures 20 and 27).

The Calibration procedure for the Air Gap Torque is shown in figure 28. With the
FE Base Model the dynamic shaft torques are calculated for each Finite Element of
the turbogenerator in the frequency range between 0 and 100 Hz, when the Air
Gap Torque excites the shaft train with a Unit Torque Amplitude of 1 kNm.
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= Excitation Torque in the Air Gap of the OL3 Turbogenerator
Procedure: Input: Harmonic Torque with unit amplitude from 0 to 100 Hz

e ] e T o

HPT LPT1 LPT2 LPT3 IS GEN EXC
—

Calculate dyn. torque for every element
mm) Calculate dyn. torsional stress 7y, monic

==) Compare with measured tors. stress Zyeasyreq

Calculate Excitation Torque that produces the measured torsional stress
Result: Calibrated Excitation Air Gap Torque for different Frequencies

Figure 28 Component 4 of the Digital Twin: Calibration of the Air Gap Torque

From the calculated dynamic shaft torques the dynamic torsional stresses can be
determined for each element by means of equation 4.1 and 4.2, especially for those
elements, where the sensors are located. The calculated dynamic stresses are then
compared with the measured stresses. Based on this comparison the Excitation Air
Gap Torque will be adjusted corresponding to the measured torsional stress. As a
result, the calibrated Air Gap Torque will be obtained for all frequencies in the
range of 0 to 100 Hz.

In chapter 10 it will be shown, how the Air Gap Torque for the two cases of a Two-
Phase Short Circuit and a Negative Sequence Current can be determined by the
described procedure.
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8 Digital Twin - a Continuous Monitoring
System for the Turbogenerator

The developed Digital Twin for Torsional Vibrations of Turbogenerators
can be used as an extended Monitoring System, that continuously
observes the dynamic torsional behaviour during operation and at
special events. The produced data of the FE-Model can be presented at all
locations of the Turbogenerator system (Figure 29).
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Figure 29: Digital Twin as a Continous Monitoring System

8.1 VIBRATIONS AND STRESSES AT ALL LOCATIONS- VIRTUAL SENSORS

It has been shown in the chapters before, that the Digital Twin can be used as a
continuously working Monitoring System, that delivers torsional vibrations,
torsional shaft torques and torsional stresses at each location of the turbogenerator
(Virtual Sensor) during normal operation and at special vibration events. Results
can be presented in the time domain as well as in the frequency domain.

If the Digital Twin is not connected to the real system via the Comparison Point 2,
it can also be used as a standalone system. In this mode of operation, the Digital
Twin can for example investigate measures for improvements of the dynamic
behaviour.
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9 Identification of System Parameter Changes

In this chapter, two cases are discussed, how changes of system parameters (mass,
damping, stiffness) can be identified by means of the Digital Twin. In the first
example, modal damping is identified. The second example shows, how stiffness
parameter changes can be determined. The less likely change of masses in
turbogenerators is not considered in this chapter.

9.1 EXAMPLE 1: CHANGE OF ONE MODAL DAMPING, SSR-EVENT

In this example, a simulated measurement is shown in the time domain and in the
frequency domain for a change of the modal damping in the 3+ mode with the
torsional natural frequency of 14,6 Hz. The modal damping for normal operation
has been identified as D = 0,001 (see figure 18) and it is then reduced to about 20 %
of the original value. Such a reduction of the modal damping may for example
occur in case of a Sub Synchronous Resonance (SSR). With the measurement signal
from one of the SSR sensors the change of the modal damping can be identified by
means of the Half Power Bandwith method. The influence of the lower damping
can then be used to investigate additional calculations with the FE-Model.

Figure 30 shows the system response for the unit amplitude excitation for the two
cases of the damping values in the time domain and in the frequency domain
When the damping has been identified, the Digital Twin can permanently produce
such responses, which may help to explain the development of the dynamic
behaviour of the turbogenerator system.

0.015

Sf/stem ﬁesponse in tHe Time‘ Domafn

o
=

0.005 —

o

-0.005

Amplitude in rad

S
=)
T

Changed Damping Parameter -

1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100
Timeins

-0.015
0

System Response in the Frequency Domain

Amplitude in rad

1
0 10 20 30 40 50 60 70 80 90 100
Frequency in Hz

Figure 30: System Response in the Time and in the Frequency Domain for the Case of
Changed Damping in the 3¢ mode - Possible SSR Event

40



9.2 EXAMPLE 2: CHANGE OF COUPLING TORSIONAL STIFFNESS

In this second test case, the torsional stiffness of the four couplings is reduced
successively by 10 %. For each of the four test cases, the change of the torsional
natural frequencies of the turbogenerator is calculated with the FE Model. The
changed frequency spectrum is then compared with the spectrum of the system
with normal stiffness values of the couplings. This spectrum coincides with the
natural frequency spectrum of the turbogenerator at normal operation (see figures
15 and 16) and can be considered as spectrum of the Base Model.

Locations for Coupling Damage

4-Dir [m]

> Torsional Stiffness in Couplings has been reduced by 10 %
= Sensitivity based approach is used for Identification of Stiffness Change and Location

= |In theory every Location can be observed for Parameter Changes

Figure 31: Locations of Couplings with reduced Torsional Stiffness

By means of the calibration procedure with the sensitivity analysis (chapter 5) the
following results could be obtained for each of the four cases of stiffness changes in
the coupling:

e The percentage change of the torsional natural frequencies in the frequency
range between 0 and 100 Hz (see figures 32 and 33)

e The change of the coupling stiffness in percentage and the determination of the
location of the stiffness change in the turbogenerator

The four test examples show that the calibration procedure for the system
parameters based on the sensitivity analysis (chapter 5) works accurately and in
real-time. Detailed results are presented in figures 32 and 33.
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Digital Twin estimates Damage Location and Severity

Damage in coupling 1 Damage in coupling 2
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Figure 32: Deviations of Torsional Natural Frequencies, Estimated Changed Stiffness
Values and location of Damage for the Couplings 1 and 2

Digital Twin estimates Damage Location and Severity
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Figure 33: Deviations of Torsional Natural Frequencies, Estimated Changed Stiffness
Values and location of Damage for the Couplings 3 and 4
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10 Identification of the Air Gap Torque

In this last chapter, two cases are discussed, how changes of the Air Gap Torques
can be identified by means of the Digital Twin. The general Calibration Procedure
for the Air Gap Torque has been described in chapter 7. The first example
considers the Air Gap Torque of a Two-Phase Short Circuit, the second example
treats the case of the Negative Sequence Current (Unsymmetric Load). For both
excitation cases no direct measurements of shaft stresses were available as input
data at the Comparison Point. Due to this fact the Air Gap Torques for the two load
cases were generated based on existing formula (see figures 4, 6, 33 and 35) and
introduced as corresponding stresses at the input location of the Digital Twin
(Comparison Point 2). In case of the Two-Phase Short Circuit the identification
procedure has been tested for an input with and without noise (figures 33 and 34).
The following figures 33 -35 show for the two load cases the generated Air Gap
Torque as excitation time function (left side) and the identified Air Gap Torque
versus frequency (0 — 100 Hz) with amplitudes in Nm (right side). The accuracy of
the identified Air Gap Torques is very good (deviations 2 — 3%), when noise is not
considered (Figures 33 and 35). There are some deviations in the range of 20 %
when a signal to noise ratio of 10 db is considered (Figure 34).

10.1 EXAMPLE 3: CHANGE AIR GAP TORQUE DUE TO 2-PH. SHORT CIRCUIT
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Figure 34: Calibration of Air Gap Torque in case of Two-Phase Short Circuit
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Two phase Short circuit
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Figure 35: Calibration of Air Gap Torque in case of Two-Phase Short Circuit with Noise
10.2

EXAMPLE 4: CHANGE AIR GAP TORQUE DUE TO UNSYMM. GRID
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Figure 36: Calibration of Air Gap Torque in case of Negative Sequence Current
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11 Conclusions and Outlook

11.1 CONCLUSIONS

This report describes the development of a Digital Twin for Torsional Vibrations of
Turbogenerators in Nuclear Power Plants.

The Digital Twin works with a Finite Element Model (FEM), which can calculate
torsional vibrations either as natural vibrations with natural frequencies and mode
shapes or as forced vibrations due to the electro-mechanical air gap excitation.
During operation the real torsional vibrations of the turbogenerator are
determined at specified locations, where sensors measure torsional displacements
or shear stresses. By comparison of the measured and the corresponding calculated
torsional vibrations the vibration difference is introduced into a calibration loop of
the Digital Twin, in which the actual system parameters of the turbogenerator as
well as the actual air gap torques can be identified and adjusted.

The developed Digital Twin can be used as an online system, running permanently
parallel to the real turbogenerator:

¢ as a monitoring system, which determines continuously the torsional vibration
state of the Turbogenerator at each location of the shaft train in the time
domain as well as in the frequency domain (Virtual Sensor)

e as a detection system for the identification and diagnosis in case of system
failures, disturbances (Air Gap Torques) and parameter changes (mass,
stiffness, damping)

The successful operation of the Digital Twin could be demonstrated by some test
cases.

11.2 OUTLOOK

For the operation of the developed Digital Twin in a Nuclear Power Plant, a Data
Logging system is needed to prepare the measured sensor signals as input for the
Comparison Point (Component 2 of the Digital Twin). First trials to operate the
Digital Twin in a plant could be started at the OL3 Turbogenerator, because OL3 is
already operating with SSR-sensors and has a Data Logging system.

The developed Digital Twin can also be used in other Scandinavian Nuclear Power
Pants. However, it needs an adjusted Component 1 of the Digital Twin: The FE-
Modell for the respective turbogenerator of a selected plant.
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DEVELOPMENT OF A DICITAL TWIN
FOR TORSIONAL VIBRATIONS OF
TURBOGENERATORS

Turbogenerators, integral to nuclear power plants, comprise steam turbines that transform
thermal energy into mechanical energy and generators that convert this mechanical energy

into electrical energy. However, disturbances in the electrical generator-grid system can lead to
significant transient torsional vibrations in the shaft train, necessitating careful monitoring for safe
operation. This report outlines a Digital Twin designed to monitor and evaluate these torsional
vibrations, employing theoretical modeling, numerical analysis, and experimental methods for
successful simulation and validation. Utilizing a Finite Element Model (FEM), the Digital Twin
accurately calculates and compares real-time torsional vibrations against theoretical predictions.
This system can not only continuously monitor the vibrational state of the turbogenerator but also
aid in diagnosing system failures and parameter changes. The development of this Digital Twin is
particularly focused on the Olkiluoto turbogenerator OL3, with the potential for adaptation to
other units through model adjustments.

A new step in energy research
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