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Foreword 

Generative AI is revolutionizing industries by automating complex 

tasks, uncovering insights, and driving innovation. In the nuclear sector, 

it offers transformative potential—from predictive maintenance to 

enhanced safety analysis—addressing critical challenges while 

improving efficiency and reliability. 

However, the adoption of generative AI in this field demands rigorous data 

security. On-premise solutions provide a robust answer, ensuring sensitive 

information remains within secure infrastructure. By avoiding reliance on 

external cloud platforms, these solutions align with stringent regulatory 

requirements and cybersecurity standards, enabling the safe and effective 

integration of AI into nuclear operations. 

The study evaluates the needs and feasibility of on-premise AI solutions for 

the Nordic Nuclear Power Plants (NPPs). Examples of applications: LLM-

based chatbots and computer vision. Additionally, it examines the legal, 

security, and connectivity constraints specific to the NPP domain and 

explores the technical and operational viability of tailored AI solutions, 

including hardware requirements and available options. 

The project was executed and led by RISE Research Institutes of Sweden and 

conducted in collaboration with a reference group of stakeholders in the Nordic 

nuclear energy sector; Vattenfall, Fortum, OKG, and TVO. The project is part of the 

Digitalisation in Nuclear Power program and financed by Vattenfall, Uniper, 

Fortum, TVO, Skellefteå Kraft and Karlstads Energi. 

 

 

 

 

 

These are the results and conclusions of a project, which is part of a research 

programme run by Energiforsk. The author/authors are responsible for the content. 
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Summary 

This report explores the feasibility and requirements for implementing 

on-premise AI solutions in the Nordic nuclear energy sector. 

The investigation focuses on natural language processing (NLP) and computer 

vision (CV) technologies, aiming to evaluate AI/ML-based systems for data 

analysis, prediction, and decision support, while addressing specific data handling 

and security restrictions inherent to nuclear power plants (NPPs). It provides an 

overview of the Nordic nuclear energy landscape, regulatory environment, and the 

technical challenges of deploying AI solutions within these constraints. The report 

highlights the potential applications of large language models (LLMs) for tasks 

such as document search, analysis, and summarization, and explores the use of 

retrieval-augmented generation (RAG) systems to enhance LLM performance. 

Additionally, it discusses the use of computer vision (CV) for monitoring, anomaly 

detection, and quality inspection tasks. Ongoing AI initiatives within the Nordic 

nuclear industry are reviewed, identifying current projects and future needs. A 

proposed pilot study aims to develop a proof-of-concept semantic search engine 

for large document collections, leveraging LLMs and RAG systems, while ensuring 

secure data handling and compliance with industry regulations. 
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Sammanfattning 

Denna rapport undersöker genomförbarheten och kraven för att 

implementera lokala AI-lösningar i den nordiska kärnenergisektorn. 

Undersökningen fokuserar på teknik för behandling av naturligt språk (NLP) och 

datorseende (CV), och syftar till att utvärdera AI/ML-baserade system för 

dataanalys, förutsägelser och beslutsstöd, samtidigt som man tar hänsyn till 

specifika datahanterings- och säkerhetsrestriktioner som gäller för kärnkraftverk 

(NPP). Rapporten ger en översikt över det nordiska kärnenergilandskapet, 

regelverket och de tekniska utmaningarna med att implementera AI-lösningar 

inom dessa begränsningar. Rapporten belyser de potentiella tillämpningarna av 

stora språkmodeller (LLM) för uppgifter som dokumentsökning, analys och 

sammanfattning, och utforskar användningen av RAG-system (retrieval-

augmented generation) för att förbättra LLM-prestanda. Dessutom diskuteras 

användningen av datorseende (CV) för övervakning, anomalidetektering och 

kvalitetsinspektion. Pågående AI-initiativ inom den nordiska kärnkraftsindustrin 

granskas, och pågående projekt och framtida behov identifieras. En föreslagen 

pilotstudie syftar till att utveckla en proof-of-concept semantisk sökmotor för stora 

dokumentsamlingar, med hjälp av LLM- och RAG-system, samtidigt som man 

säkerställer säker datahantering och efterlevnad av branschregler. 
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1 Introduction 

This report was produced as part of the On-Premise AI Solutions for Nordic 

Nuclear Applications (AI SNAP) project, led by RISE Research Institutes of 

Sweden and conducted in collaboration with a reference group of stakeholders in 

the Nordic nuclear energy sector; Vattenfall, Fortum, OKG, and TVO. The main 

objectives of the report are: 

1. To assess the stakeholder’s needs for on-premise AI solutions, in particular 

along the following two threads: (1) LLM-based chatbots for general use by 

Nordic Nuclear Power Plant (NPP) office personnel, (2) other AI/ML-based 

systems for data analysis, prediction, decision support, etc. 

2. To assess the specific restrictions and limitations for AI solutions in the NPP 

domain (e.g., legal and security-related restrictions to data handling and 

online-connectivity during both development and deployment). 

3. To explore the viability of on-premise AI solutions tailored to the NPPs needs. 

This includes an assessment of technical feasibility, computational/hardware 

requirements, expected outcomes, and a comparison of the available options 

where multiple exist. 

The project’s mission was thus to identify use cases and lay the groundwork for 

one or more follow-up projects, in which AI solutions are to be implemented. The 

follow-up project should target enhancements in operational efficiency, safety, and 

decision-making with AI, by aiding workers in an office setting. Safety-critical 

applications were not to be considered as per the project’s objective agreement. As 

part of this project, a series of semi-structured online interviews was conducted 

with a total of 9 employees of the stakeholder organizations. Three online 

workshops were held with all stakeholders involved, and e-mail communication 

was used to address additional questions and topics. A preliminary version of this 

report was provided to the stakeholders for review prior to the project’s end, and 

the final version was delivered on December 16, 2024. 

This report is structured as follows: Section 2 gives a brief overview of the nuclear 

energy landscape in the Nordics. Section 3 lays out and addresses the specific 

limitations for the training and deployment of AI in the Nordic nuclear sector. 

Section 4 introduces various relevant methods and techniques in the current AI 

landscape and illustrates the state of the art in AI for the nuclear energy sector. 

Section 5 highlights ongoing and planned AI projects within the Nordic nuclear 

energy industry, and outlines the needs and interests discussed during the 

interviews. Section 6 outlines the plans for a pilot study on AI-based document 

search as a follow-up on the AI SNAP project. It discusses the requirements for and 

viability of such an AI application as an on-premise AI solution for the nuclear 

sector. Finally, this report is concluded in Section 7 with a brief summary and 

highlighting of the primary findings. 
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2 The Nordic Nuclear Energy Sector 

The Nordic nuclear energy sector is comprised of five power plants – three in 

Sweden and two in Finland – operated by four corporations (all stakeholders in the 

AI SNAP project). The 11 reactors in these plants have a combined nameplate 

capacity of 11,354 MW. In 2022, power consumption in Sweden was 124 TWh, with 

an additional 50TWh generated and exported. The six Swedish reactors 

contributed around 30% (51.9TWh) to the total electricity produced1. In Finland the 

newly commissioned Olkiluoto 3 reactor helped to increase the percentage of 

nuclear energy in the electricity mix to 41% of the total consumption of 79.8 TWh 

in 20232, up from 30% in 20223. An overview of the Nordic nuclear facilities is given 

in Table 1. 

 

Power Plant Licensee Reactors Capacity Commission Dates Country 

Forsmark Vattenfall 3 3320 MW 1980, 1981, 1985 Sweden 

Ringhals Vattenfall 2 2190 MW 1981, 1983 Sweden 

Oskarshamn OKG 1 1450 MW 1985 Sweden 

Loviisa Fortum 2 1014 MW 1977, 1981 Finland 

Olkiluoto TVO 3 3380 MW 1979, 1982, 2023 Finland 

Table 1: Overview of power plants in the Nordics, 2024. 

 

As for the future, Finland is committed to nuclear power as part of its long-term 

energy strategy, aimed at achieving carbon neutrality by 2035 and significantly 

reduced energy import dependence. The commitment to nuclear energy is also 

evident in the country’s plans to open a nuclear waste disposal facility (Onkalo), 

expected to start operating in 20254. Sweden, originally planning to phase out 

nuclear power by 2040, has in June 2023 reversed course by changing its energy 

target from ”100% renewable” to ”100% fossil-free” electricity by 2040, enabling a 

long-term future for nuclear energy production. This change comes with an 

announcement of plans to construct at least two large-scale reactors by 2035 and 

the equivalent of 10 new reactors, including small modular reactors, by 2045, 

alongside a number of regulatory and policy changes to facilitate the construction 

of new nuclear reactors56. The long-term commitment and planned growth of the 

nuclear sector in both Sweden and Finland create a stable environment for 

investments in AI solutions for the industry. 

 

 

 
1 https://world-nuclear.org/information-library/country-profiles/countries-o-s/sweden 
2 https://www.motiva.fi/en/solutions/energy_use_in_finland/electricity_supply_and_demand 
3 https://www.treasuryfinland.fi/investor-relations/sustainability-and-finnish-government-bonds/ 

data-and-facts-energy-transition/ 
4 https://www.iea.org/reports/finland-2023/executive-summary 
5 https://world-nuclear-news.org/Articles/Roadmap-launched-for-expansion-of-nuclear-energy-i 
6 https://world-nuclear.org/information-library/country-profiles/countries-o-s/sweden 
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3 Assessment of Specific Restrictions and 
Limitations 

Due to its vital role in energy infrastructure, the inherent risks of radioactive 

materials, the potential for severe accidents, and its attractiveness as a target for 

malicious actors, the nuclear energy sector faces significant regulation. Regulatory 

oversight is conducted in Sweden by Strålsäkerhetsmyndigheten7 (SSM) and in 

Finland by STUK (Säteilyturvakeskus)8, while the relevant legislation is provided 

by the European Union (EU), as well as the Swedish and Finish states. Regulations 

and laws on the national and European level, however, are unspecific with regard 

to the technologies used in the context of nuclear power plants. Instead, it is the 

responsibility of the licensees to establish IT security teams or councils that 

evaluate proposals for the introduction of new IT-related technologies and decide 

over their approval based on legal demands for safety and security. 

An important question for the introduction of AI-based technologies in nuclear 

plants is the physical location of both the compute hardware and data. Based on 

the conducted interviews, the permissible locations for server installations are in 

all cases restricted to company premises. This includes in principle both the power 

plants themselves, as well as office buildings, with the caveat that the 

communication between any end-user compute device with compute servers is 

restricted to intranet of each individual company and cannot happen via the public 

internet. Somewhat more complicated is the question of permissible locations of 

data. In nuclear power plants, vast amounts of data, such as operational and 

maintenance logs, are created and stored, and security classification systems 

determine precisely which data can be accessed by whom and where and how it 

must be stored. In our interviews, we found potential discrepancies regarding the 

details of these data security classifications; in some cases, any site-specific data or 

data generated within the premises of a power plant must remain on-site, while in 

other cases the processing and storing of such data on remote premises within the 

same company is likely to be permissible. 

The outlined restrictions have consequences for the development, training, and 

deployment of potential AI applications, depending on the targeted kind of AI 

model and its data requirements. Here, model development describes the setup of 

data pipelines, implementation of often various models and model architectures 

for comparison, and iterative improvements and addition of features to the model, 

until the code basis for the model is complete. Model training happens repeatedly 

throughout the development process, and can be repeated or extended (”fine-

tuning”) even after the core model development phase is complete. Finally, Model 

deployment describes the process of integrating the trained model into a 

production environment, enabling its practical application and utilization by the 

end-user. Larger models are typically trained on compute clusters as the training 

process can require vast amounts of compute power and memory capacity, while 

deployment can happen on much leaner and inexpensive hardware. Hardware 

 
7 https://www.stralsakerhetsmyndigheten.se/regler/ 
8 https://stuk.fi/en/nuclear-safety 
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solutions to run an AI model on site would thus primarily be dimensioned for the 

use (also called ”inference”) of the model, not for its training. However, if the 

training or fine-tuning of a model requires the use of on-site data, the outlined 

restrictions may necessitate it to be trained on site, impacting hardware 

requirements. While the problem of data being bound to a particular site may also 

extend to model development, this can in some cases be circumvented by relying 

on similar, less safety-critical or even publicly available datasets during the 

development phase. 

Another important consideration is that neural networks may in some cases store 

parts of the training data within their network weights, allowing the data to be 

recovered from the network weights alone. This may make it reasonable to extend 

any restrictions pertaining to training data also to models trained on this data, 

which in turn may hinder the creation of individual models trained on data from 

multiple sites or companies. A possible remedy to this issue are federated learning 

approaches with data privacy guarantees, enabling the training of a single model 

simultaneously on multiple sites, without the need to collect data on a central 

server. A different approach to tackle issues related to dataset size is transfer 

learning, where models are trained on large, often publicly accessible datasets, 

before being fine-tuned to specific tasks with limited amounts of task-specific data. 

Foundation models such as Large Language Models (LLMs) build upon this idea. 

These are typically very large models trained on large amounts of publicly 

available data that are often capable of solving specific tasks even without 

additional fine-tuning on task-specific datasets. These examples show the difficulty 

of making general statements about the feasibility of AI-based solutions in the 

nuclear energy sector. High demands for security of data and compute systems in 

the nuclear sector pose a challenge, but various techniques and technologies exist 

that allow these challenges to be addressed. We thus conclude that any AI 

application for the nuclear industry must be conceived of and evaluated on an 

individual basis given the outlined constraints to hardware and data handling. 

3.1 SAFETY-CRITICAL AI APPLICATIONS IN THE NUCLEAR ENERGY SECTOR 

While explicitly exempt from consideration for the proposed follow-up study – 

and thus not the primary focus for the more detailed discussions in sections 4 and 5 

– AI-based systems for safety-critical applications in nuclear power plants are 

being pursued in the industry for the purpose of cost saving and improved safety. 

It should be noted that some interviewees brought up considerable skepticism to 

the use of AI systems in safety-critical applications, citing a lack of trust towards AI 

as decision-makers, but also the risk of automation-induced complacency, i.e., 

humans supervising or interacting with AI systems becoming negligent and over-

relying on the AI system. Indeed, problems in human-automation-interaction have 

in the past contributed to severe accidents in the nuclear energy industry [1]. 

The problem of automation-induced complacency has previously been examined 

in various contexts, for example intensive care units [2], aviation [3], maritime 

operations [4], and partially automated vehicles [5]. While some psychological 

research on the topic exists [6]–[8], the relatively small body of available research 
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does unfortunately not appear to match the importance and scope of the issue as 

AI and automation support become more and more commonplace in safety-critical 

operations of various sectors. However, research efforts directly connected to 

automation in the nuclear energy sector exist, for instance in the form of case 

studies [1], [9], a literature review on automation trustworthiness in nuclear power 

plants [10], research on safety-focused design approaches [11] and methods for the 

adoption of advanced automation [12]. These references may serve as a starting 

point for a deeper analysis of the scientific state-of-the-art in automation for 

nuclear power plants and automation-induced complacency. 

As the authors of this report, we do not take a general stance for or against the use 

of AI and automation in safety-critical areas of nuclear power plants. However, for 

the exploration, planning, and design of such solutions we strongly advise the 

careful consideration of safety and security related risks not only on the technical 

side, but also on the human factors side, including the review of research from 

psychology, human-automation-interaction, and human-centered design. 

3.2 FURTHER LIMITATIONS TO THE USE OF AI MODELS IN THE NUCLEAR 
INDUSTRY 

Finally, it should be noted that some developers of pre-trained AI models limit the 

scope of tasks for which their models may be used to exclude applications in the 

nuclear industry. An example of this can be found in Meta’s Llama 2 family of 

LLMs, whose license agreement states that “You agree you will not […] 2. Engage 

in, promote, incite, facilitate, or assist in the planning or development of activities 

that present a risk of death or bodily harm to individuals, including use of Llama 2 

related to the following: a. Military, warfare, nuclear industries or applications, 

espionage, use for materials or activities that are subject to the International Traffic 

Arms Regulations (ITAR) maintained by the United States Department of State” 

[74]. However, specific prohibitions towards use in the nuclear industry are rare, 

and are not contained in common licensing agreements such as MIT [75] or Apache 

2.0 [76]. 
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4 State of the Art in the Nuclear Energy Sector 

Two fields in AI with a particularly strong potential to significantly impact 

operational efficiency, safety and uptime in NPPs are natural language processing 

(NLP) and computer vision (CV). In this section we will discuss some of the most 

interesting recent developments in these fields, and how they can be – and in some 

cases already are – applied in NPPs. This will be done to some extent by looking at 

other industries, where AI, due to more relaxed safety and security restrictions, is 

further along in terms of utilization. 

4.1 NATURAL LANGUAGE PROCESSING 

Processing of text documents comprises a set of daily NPP office tasks that include 

everything from search and analysis to classification, sorting, summarizing, and 

editing. Common types of NPP documents include, e.g., incident and inspection 

reports, operational and maintenance logs, manuals, and regulatory documents. As 

discussed during the interviews, the number of internal documents is often 

massive; one of the licensees mentioned that they store about 650 000 documents in 

various formats and with different security classifications on their servers, as well 

as 210 000 digital drawings. Another stated that they store around 4 000 000 

documents, ranging from a couple of pages to hundreds of pages each. This means 

that in total, Nordic NPPs are likely storing over 10 million multi-page documents, 

many of them not possible to be found elsewhere. Even in cases where handling of 

documents only up to a certain security classification is permitted, the number of 

documents is often still large enough that just using manual analysis and keyword-

based search tools such as those included in most operating systems is not 

practically feasible. Algorithms with the ability to quickly read, understand and 

reason about the content in the documents are therefore highly desirable. 

4.1.1 Large Language Models 

Up until the first half of 2022, state-of-the-art in the field of natural language 

processing (NLP) had for several years been BERT and its variants [13], a set of 

transformer-based large language models (LLMs) known for their ability to 

understand text on a semantic level [14]. BERT is short for Bidirectional Encoder 

Representations from Transformers, where bidirectional indicates that it ”understands” 

the meaning of a given word by taking into consideration its context on both sides, 

i.e., it looks at the surrounding words in both directions simultaneously. Encoder 

indicates that it is an encoder-only model, utilizing only the encoder part of the 

transformer architecture (Fig. 1), while leaving out the decoder. The encoder 

transforms input text into contextualized representations (in the literature the term 

used is more commonly embeddings), which are vectors (essentially lists of 

numbers), where each vector represents a word or part of a word in the text, called 

a token. 
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Figure 1: The transformer architecture, with the encoder and decoder parts in colored rectangles. 
Figure adapted from Fig. 1 in Vaswani et al. [14]. 

 

BERT is trained on vast amounts of text to create a multidimensional space of such 

vectors, clustered based on a mathematically defined measure of similarity. During 

inference, i.e., when the trained model is used for textual analysis, the text fed to 

BERT is divided into tokens whose vectors are then mapped to locations in latent 

space according to their contextual meaning. In this way, it is possible to use BERT 

in combination with additional models or node layers for analytical output like, 

e.g., sentence classification (whether an utterance expresses a positive or negative 

sentiment about something, for example) or natural language answers, like chats.  

In November 2022, generative AI entered public consciousness through OpenAI’s 

release of ChatGPT, a conversation-tuned variant of the GPT-3.5 architecture. 

ChatGPT was one of the first LLMs to be easily accessible to anyone with an 

internet connection, while at the same time being powerful enough to be useful, 

rather than merely a fun but quickly forgotten gimmick. 

GPT is short for generative pre-trained transformer, and while GPT models are thus 

based on the transformer architecture just like BERT, they differ from BERT in that 

they are decoder-only models (Fig. 1) that work by predicting the next word (or 

token) in a sequence based on the previous words, i.e., they are natively generative. 

LLMs can be prompted to generate new, grammatically impeccable and perfectly 

coherent text in almost any style and in many different languages, based on 

conversational context. This context contains part or all the history within the 

ongoing conversation, system instructions, and other text elements. The context 

length, or size of the context window, which can be regarded the LLM’s working 

memory, is often a significant limitation in current LLMs and an active area of 

research [15]. 
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 GPT 4o o1-
preview 

Gemini 1.5 
Pro 

Claude 3.5 
Sonnet 

Llama 3.2 
405B 

Mistral 
Large 2 

Model size 
(no. 
parameters) 

N/A* N/A N/A N/A 405B 123B 

Developer Open AI Open AI Google Anthropic Meta Mistral 

Software 
License 

Closed 
Source 

Closed 
Source 

Closed 
Source 

Closed 
Source 

Open 
weights 
(Meta 
Llama 3 
Community 

License 

Agreement) 

Open 

weights 
(Mistral 
Research 
License) 

Modalities 
(input 
and/or 
output) 

Text, 
images, 
audio 

Text Text, 
images, 
audio 

Text, 
images 

Text, 
images 

Text, 
images 

Context 
window 
(no. tokens) 

128 000 128 000 128 000 200 000 128 000 128 000 

Table 2: Top performing LLMs from different developers as of October 2024. ChatGPT is the name 
given to conversation-tuned versions of GPT-4o and most recently OpenAI o1-preview. A 128 000 
token context window, which only Claude 3.5 Sonnet exceeds, corresponds roughly to a 300-page 
book. Open weights is different from open source in that the former license gives access to and 
allows training of the neural network parameters of the model, but not the full source code. *It is 
widely believed that the original GPT-4 contains 1.75T parameters, and that GPT-4o is smaller than 
that. However, this has not been confirmed by OpenAI. 

 

Pre-trained GPT-based LLMs are trained without human supervision on enormous 

amounts of data to gain a broad understanding of language and the many concepts 

and relations it encodes, before they are then fine-tuned to specific tasks. Pre-

training is done on public datasets [16], and proprietary data that has either been 

bought from external parties or created in-house. Because of this, LLMs are likely 

to have at least some knowledge in almost every domain, even before fine-tuning, 

and can thus in many cases be used out-of-the-box to do a lot of office-related 

work, including document search and analytics. However, for domains with little 

data accessible for pre-training, domain-specific fine-tuning may be beneficial.  

Fine-tuning typically involves at least one of the following two methods. The first 

method is ”proper” training where the internal parameters of the neural networks 

constituting the LLMs’ architecture are updated, using small, curated datasets and 

at least some level of human supervision to ensure that the output of the model is 

in alignment with human values and desires, and as free of hallucinations (recently 

established LLM terminology for falsehoods) as possible. ChatGPT and other 

popular LLMs (see Tab. 2) have been fine-tuned in this way, in most cases with the 

objective of making them great at human-like conversation. The same method can 

be applied to NPP-specific data to make them native experts in the nuclear 

domain, but is, as we will discuss in Sec. 6, computationally rather expensive. 

The second method is in-context learning, where the parameters are left untouched, 

and the model instead learns by example or by additional information being fed to 
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it as part of the conversation. Examples can be prompts in the form of task-solution 

pairs that are provided to the model, which teaches it how to solve similar tasks 

[17]. Additional information can be documents on a particular topic, which 

enhances the LLM’s knowledge and understanding of this topic (and, as a bonus, 

enables discussion about the contents of the documents). In-context learning is not 

limited by the amount of compute as much as it is limited by the model’s context 

window, which currently only allows for a few hundred pages of text in the most 

advanced LLMs. However, there are methods to circumvent this limitation, as we 

will discuss in Sec. 4.1.3. 

Finally, we note that, although GPT-4o and its counterparts are still most 

commonly called large language models – the reason why this report will stick with 

this term – many of these models are now actually large multi-modal models, since 

they can take as input and/or produce as output data of other types, or modalities, 

than just text (the ”o” in GPT-4o stands for omni, to signify its multi-modal 

capabilities). In future iterations of these models, it is conceivable that the number 

of modalities they can handle will increase and thereby unlock completely new use 

cases. 

4.1.2 Impact of Model Size and Language on Performance 

At the time of writing, the LLMs in Tab. 2 are those with the highest average 

performance scores taken over the rather extensive set of public LLM 

benchmarking datasets. However, according to the interviewed licensees, closed 

source models such as the ones in this table, which can only be accessed over the 

public internet, are allowed to handle only a small subset of the data in NPPs. 

Furthermore, they are too large (in terms of neural network parameters) to run 

cheaply and efficiently on local servers. An alternative is to use smaller open source 

or open weights (referred to only as ”open” henceforth) LLMs, a small selection 

which is listed in Tab. 3. More extensive lists over open LLMs can be found online.9 

A decrease in model size generally leads to lower performance on the 

benchmarking datasets. This is exemplified by Fig. 2, which shows the accuracy of 

the models in Tab 3 on the Measuring Massive Multitask Language Understanding 

(MMLU) benchmarking dataset [18], which is one of several common LLM 

benchmarks. MMLU is a general reasoning dataset where the models are tasked 

with answering multiple-choice questions in all kinds of subjects, including civics, 

economics, math, and physics. It is intended as a test of textual understanding, and 

how well the models can utilize their innate world knowledge gained from pre-

training to answer the questions. The creators of the MMLU benchmark estimate 

that human expert level accuracy is about 90%, which is not much higher than the 

best <100 billion parameter LLMs in Fig. 2, and about the same as the largest state-

of-the-art LLMs: Llama 3.2 405B scores about 87% and GPT-4o 89% [19]. However, 

it should be noted that parts of these benchmarks, despite their creators’ best 

efforts, may have ended up in the training data of the models, which would make 

their performance scores more difficult to interpret10. Moreover, the accuracies in 

 
9 https://github.com/eugeneyan/open-llms 
10 An improved version of the MMLU benchmark, the MMLU-Pro benchmark [15], has recently been released 
and may soon make benchmarking on the MMLU obsolete; however, at the time of writing, its novelty means 
that only a few of the most recent LLMs have been tested on it. 
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Fig. 2 come from the developers themselves; independent test results would be 

preferable but are currently quite difficult to find. Nevertheless, on some 

benchmarks, in particular the recently instituted ARC-AGI11 and SimpleBench12, 

the best LLMs are still quite far from reaching even human non-expert level 

performance13. Another thing to note is that designing an LLM – which often 

means more than just fine-tuning it – for a specific task, like programming, can 

help bridge the performance gap between smaller and larger models on this task; 

for example, according to Mistral, their 22B parameter LLM Codestral, which has 

been designed for programming, beats out the general purpose model Llama 3 70B 

on several programming benchmarks14. 

 

 Llama 3 Mistral 
NeMo 

Qwen 2.5 OLMoE* Phi-3.5-
MoE* 

Model size 
(no. 
parameters) 

1B (Llama 3.2), 
3B (Llama 3.2), 
8B (Llama 3.1), 
11B (Llama 3.2), 
70B (Llama 3.1), 
90B (Llama 3.2) 

12B 0.5B, 1.5B, 3B, 
7B, 14B, 32B, 
72B 

1B active, 
7B total 

7B active, 
42B total 

Developer Meta Mistral & 
NVIDIA 

Alibaba Cloud Ai2 Microsoft 

Software 
License 

Open weights 

(Meta Llama 3 
Community 
License 
Agreement) 

Open 
weights 
(Apache 2.0) 

Open weights 

(Apache 2.0, 
Qwen Research 
(3B, 72B)) 

Open 
source 
(Apache 
2.0) 

Open 
weights 

(MIT 
License) 

Modalities 
(input and/or 
output) 

Text, images (11B 

and 90B versions 
only) 

Text Text Text Text 

Context 
window (no. 
tokens) 

128 000** 

 

128 000 128 000** 4096 128 000 

Table 3: Some notable smaller open LLMs as of October 2024. *A so-called Mixture-of- 

Experts model, where only a fraction of the total number of parameters are activated per 

input token. In the literature, these models are usually compared to non-MoE LLMs with 

a similar number of parameters as their active ones. **True only for some of the larger 

versions. Smaller model versions generally have smaller context windows. 

 

An additional aspect of LLM benchmark performance is how it varies with respect 

to language. Perhaps not surprisingly, there seems to be a strong tendency for 

performance to be higher for high-resource languages (i.e., languages for which 

there is a lot of online text), as well as for lower-resource languages with strong 

similarities to high-resource languages, such as Afrikaans [22]. In the context of the 

Nordic NPPs, this is important as many of their documents are in either Swedish 

 
11 https://arcprize.org/arc 
12 https://simple-bench.com/index.html 
13 Coming up with benchmarks for LLMs that capture all aspects of their intelligence is quite difficult, for 
several reasons. This is reflected in the steady stream of new benchmark proposals, coming both from the AI 
model creators themselves, and from independent researchers. 
14 https://mistral.ai/news/codestral/ 
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or Finnish, which are classified as mid-resource EU languages in [23]15. The authors 

point to two open source LLMs created specifically to perform well in Nordic 

languages: the Finnish-specialized Poro 34B, created by Silo AI in collaboration 

with University of Turku and the Horizon Europe funded High Performance 

Language Technologies (HPLT) project, and the same group’s subsequent Viking 

model family16,16 with 7B, 13B, and 33B parameters. Besides Finnish, the Viking 

models have been trained for improved performance in Swedish, Norwegian, 

Danish, and Icelandic. 

 

Figure 2: Accuracy on the MMLU benchmarking dataset for LLMs with less than 100 billion 

parameters (scores for Llama 3.2 11B and 90B could not be found). 5-shot means that 5 question-
answer pairs are fed to the LLM before testing starts, as examples of how to do the test. This in-
context learning often increases the performance compared to 0-shot, where no examples are 
provided. Sources: Llama [19],Meta blog; Mistral Mistral blog; Qwen Qwen blog; OLMoE [20]; Phi 
[21]. 

 

On average, Poro 34B outperforms other small open models, including the original 

Llama 33B, on several different common benchmarks that have been translated 

into Finnish, as well as on English-to-Finnish translation tasks [24]. While it is not 

clear how Poro compares to the latest small open models, its performance increase 

compared to the next best LLM in the study (Llama 33B), combined with the fact 

that the other LLMs perform worse in Finnish than in English, points towards 

research into LLM multilingualism being a worthwhile endeavor. 

For the Viking models, no benchmark scores could be found, but Silo AI claims 

state-of-the-art performance compared to other small open models with respect to 

the five Nordic languages mentioned above. In their claim, they include GPT-SW3, 

which is a GPT-3 based model trained on a text dataset called The Nordic Pile17, 

which is a Swedish-heavy dataset collected by AI Sweden. 

Besides national language, some researchers have suggested that industry and 

even plant specific language may require some consideration. In 2021, the 

Electronic Power Research Institute (EPRI) set out to collect words and phrases in 

 
15 The authors of the study confusingly calls Swedish both mid-resource and high-resource 
16 https://www.silo.ai/blog/viking-7b-13b-33b-sailing-the-nordic-seas-of-multilinguality 
17 https://www.ai.se/en/project/gpt-sw3 
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four technical areas within the nuclear domain, to create a dictionary for use in 

nuclear NLP applications18. The current status of the project is unclear, however. 

Moreover, it is also unclear whether such a dictionary is still needed, considering 

how much more capable current LLMs are compared to the BERT models that 

were state-of-the-art when the project started. 

Finally, understanding how the performance on the many benchmarks relate to a 

given use case, and which LLM to go for – if any – is not entirely easy. For use 

cases where long and nuanced conversations on a broad set of topics are expected, 

a large general-purpose model with a large context window may be the only type 

of model that works well enough. For other use cases, a smaller and possibly task-

designed model may work just as well from a performance standpoint, while at the 

same time saving the user a lot of money on hardware and other resources 

necessary for running the model. A good rule of thumb could be to look at 

benchmarks that seem most relevant to the use case, choose the best performing, 

regulations compliant model that the available hardware can handle, and then 

subject it to careful evaluation on use case data. To maximize performance, 

language may be a factor to consider as well. 

4.1.3 Retrieval-Augmented Generation 

A retrieval-augmented generation (RAG) system typically combines retrieval-

based models such as Dense Passage Retriever [25] (in which BERT serves as an 

embedding model) with generative LLMs to enhance the quality and accuracy of 

the generated responses, while reducing the need for a large context window19. For 

these reasons, RAG systems may be particularly useful when dealing with large 

knowledge bases or answering fact-based questions that require highly domain-

specific knowledge that may not be very well represented in the training data. 

A basic (or naive) RAG system [26] first uses an embedding model to vectorize the 

input question, to enable a similarity search of an external database containing 

vector representations of text chunks from various types of text documents, to find 

the chunks most relevant to the question. An LLM then receives both the question 

and the retrieved chunks as input to generate an answer. The idea is that this will 

allow for more accurate and up-to-date answers. 

Since new data can be added to the database at any time, RAG systems, which can 

have many different architectures and different levels of complexity [26]–[29], seem 

especially well-suited for domains where data changes frequently, such as in an 

NPP environment. Moreover, by not relying only on the frozen data used for pre-

training of the LLM, the level of hallucinations can potentially be significantly 

reduced, and the answers be more specific. 

 
18 https://eprijournal.com/a-dictionary-to-help-ai-tools-understand-the-language-of-the-electric-power- 
industry/, https://www.epri.com/research/products/000000003002023822 
19 Knowledge graphs can also be used as retrieval model, but this seems to be less common. 
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Figure 3: A basic RAG system. 

 

Examples of LLM-based RAG for the nuclear domain are still scarce, but in a small 

study by Anwar et al. [30], the authors use ChatGPT-3.5 out-of-the-box in a basic 

RAG system for retrieval of information from a textbook on CANDU-type 

(CANada Deuterium Uranium) reactors, The Essential CANDU, and compare the 

performance of this system to direct responses from ChatGPT-3.5 (i.e., without 

RAG). The RAG system performs significantly better than the LLM alone on all 

evaluation criteria except one. It should be noted that ChatGPT-3.5 has since been 

far surpassed in performance several LLMs, including ChatGPT-4o and even the 

much smaller version ChatGPT-4o Mini. However, if the RAG system is set up in a 

sufficiently modular way, the LLM can quickly be replaced by more powerful 

models as they are released; how to modularize more complex RAG systems is 

discussed in [31]. 

While RAG systems hold a lot of promise, there are still challenges and limitations 

to overcome. Barnett et al. [32] conducted three case studies with RAG, and list 

seven different failure points they encountered, stemming from different RAG 

system components. They also briefly discuss the need for proper RAG system 

metrics. Ru et al. takes this discussion further by proposing the RAGCHECKER 

evaluation framework [33], which calculates three different metrics: the response 

quality of the RAG system (Overall Metrics, in terms of precision and recall), how 

good the retrieval process is at finding exactly the right information needed to 

generate a correct answer (Retriever Metrics), and, essentially, how well the LLM 

behaves with respect to hallucinations and four other factors, all of which the 

authors define in precise mathematical terms (Generator Metrics). 

However, even a RAG system boosted by a powerful, but passive LLM may not by 

itself always be enough for the level of automation many companies envision for 

their document processing pipelines. For very complex multi-step tasks, additional 

components may be needed, such as AI agents. 
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4.1.4 Agents 

An AI agent is an AI model that can solve long-horizon tasks that require planning 

and the ability to break the tasks down into subtasks, use tools to carry out these 

subtasks, and then memorize the subtasks’ outcomes so that they can be used for 

subsequent subtasks. AI agents have recently become a very popular topic of 

discussion in relation to LLMs. While current base LLMs have vast world 

knowledge and can solve complex problems in one go, they are not yet able to 

function very well as agents, especially not on their own. One of the first attempts 

at creating an LLM-based agent was the open-source project AutoGPT20, which 

uses GPT-4 API calls in a self-prompting loop to reason about a (user- 

prompted) task. From this reasoning, it creates a step-based plan, criticizes the plan 

to potentially improve upon it, takes an action based on the plan, and then uses the 

outcome of this action to update the plan and carry out the next step. This loop 

then runs until the main task has been solved. An action in this context can be 

anything from requesting information via an API to sending a control signal to a 

robot. Moreover, multi-agent collaboration is an active field of research that clearly 

points to a possible future enhanced through agents with the ability to self-

organize [34], [35]. 

One or more agents integrated into a RAG system could potentially provide 

enhanced functionality compared to a RAG system with a non-agentic LLM. For 

example, an agent could interact with the retrieval model iteratively, to refine 

questions based on previous responses. The agent could prompt follow-up 

retrievals or adjust the questions if conflicting documents or unclear information is 

retrieved, thus potentially increasing the precision and relevance of the retrieved 

information. Agents would also open for actions to be taken on the retrieved 

information, such as maintenance scheduling, sending notifications, or generating 

maintenance reports. 

A major problem with agents such as AutoGPT, including multi-agent systems, is 

that they often break down well before they have finished the main task, mostly 

due to compounding hallucinations. This makes current agents too unreliable for 

many tasks, especially more complex ones. On the other hand, as LLMs continue to 

improve, utilizing agents will become increasingly feasible. Eventually, agentic 

behavior will likely become an ability innate to many LLMs. This was first hinted 

at by OpenAI’s latest models o1 and o1-mini, that can solve complex problems 

through chain-of-thought (or stepwise) reasoning and has now started becoming 

reality after Anthropic’s release in October 2024 of a new version of Claude 3.5 

Sonnet, with the ability to control a computer21. However, while Claude provides a 

new state-of-the-art on the OSWORLD benchmark [36] – a real computer 

environment for benchmarking of multi-modal agents – it only scores a 14.9 % 

success rate on tasks in the screenshot-only setting, compared to 72.36 % for 

humans. In this human-like setting, the agent decides based on screenshots of the 

OS environment how to move the mouse cursor and click on icons in the 

environment. 

 
20 https://github.com/Significant-Gravitas/AutoGPT 
21 https://www.anthropic.com/news/3-5-models-and-computer-use 
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4.1.5 Applications of LLMs in the Nuclear Industry 

Since LLMs are a fairly new technology, many companies and institutions 

interested in them still need to find out how to leverage them to best benefit their 

businesses. Due to the LLMs’ ability to extract relevant information from all kinds 

of documents, summarize the most salient points in a text, draw conclusions, or 

even make suggestions or recommendations based on texts, LLMs have many 

potential use-cases. For many real-world scenarios however, LLMs are becoming 

part of larger tool chains, requiring additional development beyond the mere 

deployment of chat-bots to create task-specific solutions. Many of the applications 

discussed with the NPP licensees fall within this category. Below we look at some 

of these applications, as well as a few that were not brought up but that may still 

be relevant in an NPP context. 

Operator Training Provided an LLM fine-tuned on relevant NPP specific 

documentation, or one that is part of a RAG system that has access to such 

documentation, NPP operators could potentially use the LLM as a teacher, 

instructor or teaching assistant when learning how to work with new hardware or 

software in the plant. Millions of users are already using LLMs for informal 

teaching at work or in their spare time, and some online academies have started 

integrating LLMs into their teaching software; Khan Academy’s GPT-4-powered 

assistant Khanmigo is probably the most well-known example of such 

integration22. However, in industrial settings – perhaps NPPs in particular – where 

requirements on safety and security are often very strict, partially or fully 

automating operator training with LLMs must be preceded by careful evaluation of 

the models. 

Operational Support and Troubleshooting Operational support and 

troubleshooting is a natural extension of an LLM tailored to function as an 

instructor for operators. Again, through proper fine-tuning, RAG, or both, it would 

be possible to instill into the LLM plant specific knowledge down to individual 

machines and processes. If the LLM is then coupled to a user-friendly user 

interface – based on chat, voice, or video, or on a combination thereof – it may be 

able to provide support on, e.g., how to adjust the parameter settings of a machine 

or help troubleshoot it when it malfunctions. This is an active area of research, but 

papers focused on NPPs are still rare. 

In [37], the authors discuss a demonstrator they created to showcase how LLMs 

can be integrated into fault diagnostics systems to provide explainability to sensor 

signals indicating faults in, e.g., nuclear power plants. The demonstrator used 

GPT-4 to enable operators to ask questions and receive answers about diagnoses in 

natural language, with the answers containing information about the origins of the 

faults as well as what effects they may have. 

In a recent study by Freire et al. [38], they developed an LLM-based RAG system 

for operational support and troubleshooting in a detergent factory, to better 

understand the benefits, usability, risks, and barriers to adoption of such a system. 

Several different commercial and open (non-fine-tuned) LLMs were evaluated, 

including GPT-4 and Mixtral 8x7b (two models that performed comparably on 

 
22 https://www.khanmigo.ai/ 
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most measures, with a slight edge to GPT-4). The data used were factory 

documents and issue analysis reports, the latter which is a type of report that is 

constantly incoming and would thus require regular fine-tuning to be incorporated 

into the LLM, which is difficult to accomplish in practice. The evaluation of the 

system was done outside of production, but with factory operators. While the 

system showed a lot of potential, operators expressed worry about risks and still 

preferred to talk to human experts, thus highlighting the need for further 

development of various aspects of the system, including the user interface. 

Commercial LLM-based solutions that the vendors claim can do both operator 

training and operational support and troubleshooting are already on the market, 

but how well they work is unclear as independent tests are hard to find23. 

Finally, it is important to note that there is a lot of risk involved in introducing 

automation for applications that many times fall in the safety-critical category. As 

we discuss in Sec. 3.1, even if no decisions are ever made directly by the LLM and 

all it ever outputs are either suggested actions or just explanations of what might 

be wrong, automation-induced complacency could lead to highly negative 

outcomes of the model hallucinates. 

Regulatory Compliance Since nuclear power plants are heavily regulated, plant 

operators frequently retrieve, read and interpret information in regulatory 

documents to understand whether plant operation, equipment, and processes are 

in compliance with these regulations. This often quite labor-intensive task may be 

well-suited for a RAG system where an LLM has access to all regulatory 

documents as well as documents on all the aspects of the plant that are covered by 

these regulations (e.g., all technical documents). To minimize the risk of 

inadvertent non-compliance, a mechanism could be set up that ensures that the 

system is updated as soon as something in the plant changes, or when there are 

changes to the regulations. Moreover, it may be possible to configure the system so 

that an automatic compliance check by the LLM is triggered every time such 

changes occur. 

Using LLMs for regulatory compliance verification has been explored for other 

industries and domains. Fuchs et al. [39] evaluated GPT-3.5 for automated 

compliance checking of buildings designs, using in-context learning and two other 

techniques. Another example is Berger et al. [40], who compare different LLMs 

(two versions of GPT-3.5, GPT-4, and Llama2 7B, 13B and 70B) with respect to their 

ability to verify that corporate financial documents comply with regulations. The 

studies share the conclusion that, while the outcomes are promising, fine-tuning on 

domain-specific data should be explored to boost performance. The Berger study 

discusses language as one of the reasons to do fine-tuning; part of the financial 

document dataset they use for testing is in German, and the LLMs perform much 

worse on this part than the English one. 

Report Generation Writing reports is an important task in an NPP, as it helps 

maintaining things like operational efficiency, safety, and regulatory compliance. 

Many types of reports are written in NPPs, such as reports on plant operations, 

incidents, events, safety issues, and maintenance. While much of this reporting is 

 
23 https://www.symphonyai.com/industrial/industrial-llm/ 
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already automated using various digital systems, large language models can 

potentially handle cases where more complex and detailed reporting is needed, or, 

as discussed under ”Operational support and troubleshooting” above, provide 

explainability to reports. 

Studies on report generation come mostly from other domains, such as medicine 

and engineering. Nakaura et al. assess the use of GPT-2, GPT-3.5, and GPT-4 for 

generation of radiology reports, by comparing the GPT-generated reports to 

reports written by human radiologists [41]. They find the reports by GPT-3.5 and 

GPT-4 to be very convincing from a linguistic standpoint, but the radiologists are 

still more accurate when it comes to the actual diagnostics, and the authors 

therefore recommend use of LLMs only as an aid. 

Colverd et al. present an LLM-based RAG system for generation of flood disaster 

impact reports and compare their quality to that of human-written reports [42]. 

They test Google’s older model PaLM-Text-Bison, GPT-3.5, and GPT-4, and 

conclude that GPT-4 yields the best results. However, they too advice that the LLM 

is not to be left to work completely on its own. 

Lastly, in [43], the authors introduce a RAG system for synthesis of comprehensive 

work session safety and security reports, from operational logs and session 

descriptions. They evaluate the quality of reports generated from data from the 

Aviation Safety Reporting System (ASRS) database, using different combinations 

of LLMs and embedding models, specifically different sizes of the original Llama, 

and different versions of BERT. On this dataset, which they only use as an 

example, the authors see good performance, in particular from Llama 70B 

combined with AeroBERT. 

Requirements Engineering Requirements engineering includes several different 

activities, such as elicitation (i.e., gathering of requirements from stakeholders), 

analysis, refinement, specification, and management of requirements for a product 

or a system, such as an NPP. While it is conceivable that large language models 

could help with all these activities, research into requirements engineering 

specifically for NPPs seems to be mostly focused on how the requirements are 

represented to the engineer, and on requirements management [44]; according to 

the authors ”...it is relatively clear what a nuclear power plant should and should 

not do.” 

Efficient and accurate requirements classification is a time- and cost-saving 

measure that makes it a lot easier to ensure that the project stays aligned with the 

requirements as it proceeds. In work from 2019, Myllynän in collaboration with 

Fortum trained an NPP requirements classifier based on a feed forward network 

coupled to an NLP model consisting of a recurrent neural network with long short-

term memory cells [45]. The training dataset consisted of regulatory guides (YVL 

Guides) from the Finnish Radiation and Nuclear Safety Authority (STUK), while 

evaluation was done on requirements from both Finnish and UK nuclear 

regulatory authorities. Although the model achieved promising results, generative 

LLMs may be even better suited for this type of application due to their vastly 

improved textual understanding compared to any models available in 2019. 



 ON-PREMISE AI SOLUTIONS FOR NORDIC NUCLEAR APPLICATIONS 
 

25  

 

 

 

Predictive maintenance Predictive maintenance is a highly active field of research 

that has the potential to significantly increase operational efficiency, uptime, and 

safety in nuclear power plants. Predictive maintenance commonly entails AI-based 

analysis of real-time data originating from plant sensors, to find trends or 

anomalies known from training on historic data to correlate with subsequent 

failures or even plant outages. On the nuclear side, predictive maintenance 

research is still mostly carried out using various types of traditional machine 

learning algorithms and models based on, e.g., long short-term memory (LSTM) 

networks, which, in contrast to LLMs, are designed for direct processing of time-

series data [46], [47]. However, there are still ways to leverage the power of LLMs 

for predictive maintenance. One is to combine LLMs with models that can pre-

process the time-series data. In this hybrid approach, a model such as an LSTM 

could be used to transform the time-series data into statistics like averages, 

standard deviations, and max and min values, which can then be presented to the 

LLM in natural language format for further analysis. Another and potentially more 

powerful approach is to use prompting techniques such as in-context learning and 

chain-of-thought prompting to essentially elicit in the LLM a latent ability to do 

time-series analysis, as suggested in [47]. The authors show that providing GPT-4 

with prompts containing both the time-series data and additional questions, 

instructions, or information about this data, it is possible to make the model 

process at least shorter time-series data with good results. They also evaluate 

Llama 3 8B, which does not perform well out-of-the-box due to its much smaller 

parameter size but improves significantly on several measures with fine-tuning on 

prompts similar to those used with GPT-4, but with the answers included. 

It is worth noting that the new (at the time of writing) OpenAI-o1 series models are 

chain-of-thought reasoners innately, which could mean that they are even better 

suited for time-series processing than one-forward-pass LLMs like GPT-4. 

However, their much longer inference times may be disqualifying in many cases. 

Programming Two surveys2425 from 2024 indicate a widespread adoption by 

software developers in several countries of LLMs as tools for programming. 

Considering the overall very positive sentiment expressed by the surveyed 

developers, this trend seems likely to follow in all industries where programming 

is part of the job, including the nuclear industry. 

In addition to code generation, which includes generation of code from scratch as 

well as code completion, LLMs can do bug fixing, commenting, unit testing, and 

documentation. LLMs are commonly proficient in all major programming 

languages, but just as with natural language, where most LLMs tend to score 

highest when both input and output is in English [22], there is likely a strong 

correlation between proficiency in a particular programming language and the 

amount of training data that exists for it. While the context windows of the most 

powerful models (see Tab. 2) are often too small to generate an entire code base, 

the models can be very useful for generating smaller chunks of code or scripts for, 

e.g., data processing and visualization. 

 
24 https://www.bairesdev.com/blog/72-software-engineers-genai-productivity/ 
25 https://github.blog/news-insights/research/survey-ai-wave-grows/ 
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4.2 COMPUTER VISION 

 

AI-based computer vision is likely the most industrially mature type of AI, with 

many commercial actors already selling computer vision systems for applications 

such as quality inspection and various kinds of real-time monitoring. These 

systems have started to find their way into not only the manufacturing and process 

industries, but the nuclear industry as well. As stated in the introduction of this 

section, computer vision came up as another interesting AI technology track 

during the interviews with the NPP licensees, albeit to a much lesser extent than 

LLMs. Here we will give a brief overview of the field of computer vision and then 

discuss a few NPP-relevant applications in little more detail. 

4.2.1 Computer vision models and techniques 

Most industrial computer vision systems that use AI rather than rule-based vision 

algorithms26 still rely on AI architectures that can only be trained on and process 

image data. However, in the last couple of years, transformer-based multi-modal 

vision models have started making inroads into the field, with expanded 

capabilities like visual-question answering, where the user can converse with the 

model about the contents of the images (GPT-4o is an example of such a model), 

and image editing, where the model can be asked to add, modify, or remove 

elements in images. However, both the older and newer architectures can handle a 

lot of the most industrially important computer vision techniques: image 

classification, object detection, image segmentation, anomaly detection, optical character 

recognition, and pose estimation. 

Image classification Image classification is the most basic computer vision 

technique, where the model is trained to classify images according to their content, 

i.e., it can tell the user whether an image contains a cat, a car, a person, etc (see Fig. 

4). Training is done by feeding the model images together with their content labels. 

AlexNet, the model that kick-started the deep learning revolution in 2010, is an 

image classification model [48]. 

Object detection Object detection is slightly more advanced than image 

classification (Fig. 4). Object detection models can not only classify the objects that 

an image contains but also locate them in the image by placing a (usually 

rectangular) bounding box around them. Training of object detection models can 

be a bit more laborious than image classification models, since each instance of an 

object in every image must be labeled. One of the most popular object detection 

models is the YOLO model family [49], which is open source and relatively easy 

for someone even with only rudimentary Python programming skills to train and 

apply. 

Image segmentation Image segmentation is the technique of doing pixel-level 

classification of objects in an image (Fig. 4). This technique is more advanced than 

 
26 Rule-based computer vision uses human-defined image features such as edges, shapes, and color gradients 
to determine the contents of an image. This type of computer vision is quite rigid in terms of the patterns it 
can recognize, but for some industrial vision tasks, where the patterns have simple shapes that do not vary a 
lot, and the features are therefore easily defined, they can still be very useful. An example of such a task is 
verifying the presence of boreholes. 
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object detection, since it localizes objects more exactly. Segmentation models can be 

trained to understand which pixels belong to which individual object even when 

two or more objects partially overlap. Training a segmentation model is a slightly 

more involved procedure than training an object detection model, since the 

bounding box around each object in the images cannot just be a simple shape, like 

a rectangle, but has to be a filled polygon that closely follows the outline of the 

object – a so-called segmentation mask27. There are many segmentation models to 

choose from, but some of the most powerful ones are the open source models 

Segment Anything and Segment Anything 2 from Meta [50], [51]. Moreover, the 

latest iterations of YOLO can now also do image segmentation28. 

 

 

Figure 4: Illustrations of different computer vision techniques: image classification (left), 

object detection (middle), and image segmentation (right). Source: Wikimedia commons 

(modified). 

 

Anomaly detection Anomaly detection is a popular technique for quality 

inspection, where the task is to find, e.g., surface defects or deviations on products 

or structures (Fig. 5). This technique is different from those previously mentioned 

in that the training is done on images that do not contain the objects that the model 

is supposed to detect or classify. For example, if the purpose of the anomaly 

detection model is to detect cracks in walls, then it should be trained on a 

representative distribution of crack-free walls, in order to learn what such walls 

look like. Images of walls with cracks will then be difficult for the model to process, 

and the output will look very different – anomalous – compared to the output from 

processing of an image of a crack-free wall. 

Anomaly detection models are suitable in cases where the captured images are 

very similar to each other (due to fixed camera angles and lightning etc.), and 

when the anomalies are rare. Anomaly detectors are also less labor-intensive to 

train than both object detectors and image segmentation models, since very little 

labeling is usually needed; the images just have to be sorted according to whether 

they contain anomalies or not. One big downside is that anomaly detection models 

 
27 This process can be partially automated, however, which reduces the need for very precise labeling. 
28 https://github.com/ultralytics/ultralytics 
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cannot by themselves classify the anomalies. The ability to classify anomalies is 

sometimes desirable as it gives the ability to gather statistics over occurrences of 

different kinds of anomalies, which in turn can lead to better root cause analyses. 

On the other hand, anomaly detectors can be used to collect data for training of 

models than can do classification. Anomaly detection models can be found as open 

source, e.g., the Anomalib library [52], which contains several anomaly detection 

models based on different architectures, where the most powerful ones utilize 

transformers. 

 

 

Figure 5: Anomaly detection. The direct output is commonly a heat map that is transformed 

into a segmentation mask (red field in the right image) based on a threshold value. 

 

Optical character recognition Optical character recognition (OCR) is a technique to 

detect and label text in images. Many popular OCR models rely on a combination 

of different models, such as an image segmentation model to find individual 

characters and words, and a sequence prediction model like a long short-term 

network (LSTM) to predict the resulting word sequence. EasyOCR is an example of 

an open-source OCR framework which allows for different combinations of models 

to be used for the OCR pipeline29. However, multi-modal OCR models like 

CLIP4STR [53], which is based on OpenAI’s CLIP model [54], seem poised to 

become the new standard due to their performance advantage. Large language 

models with multi-modal capabilities can also do OCR and are powerful enough 

out-of-the-box to be useful for OCR tasks that do not require near-perfect 

accuracy30, but for tasks that do, fine-tuning is necessary. Due to LLMs’ much 

higher computational cost with respect to fine-tuning and inference, models like 

CLIP4STR will likely still be preferable for OCR for some time. 

Pose estimation Pose estimation is the ability to determine the pose of an object, 

i.e., its orientation in space. Pose estimation models commonly track the 

coordinates of points on the object. Pose estimation is very important for 

applications such as bin picking, where a robot has to determine on-the-fly how to 

grip an object in order to safely pick it up. The latest YOLO models can do pose 

estimation. 

The field of computer vision is developing quickly, and it is becoming increasingly 

easy for companies to use in-house competence to experiment with different vision 

techniques. One important factor that is still being researched, however, is 

generalizability of the models. A common problem when a company wants to 

 
29 https://github.com/JaidedAI/EasyOCR 
30 https://blog.roboflow.com/best-ocr-models-text-recognition/ 
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implement computer vision for a task is that the models often become quite 

inflexible in terms of their ability to handle objects and anomalies that they have 

not been trained on. 

Nevertheless, in contrast to LLMs, computer vision systems are already used in 

several applications in NPPs. Below we will look at a few examples, some of which 

were mentioned during the interviews. 

4.2.2 Applications of Computer Vision in the Nuclear Industry 

Visual event monitoring In an NPP, visual event monitoring is an important 

safety measure. An event can be understood both as something expected 

happening that needs tracking, or as sudden occurrences of something unwanted 

or suspicious, e.g., a pipe that starts leaking, a machine that catches fire, or the 

presence of persons or objects that should not be in a certain room or on or near the 

NPP premises at all. Such monitoring has historically been done solely by human 

operators, but with computer vision it is possible to automate this task, or at least 

significantly reduce the burden on the operators by acting as a filter that alerts 

them for review of the recorded videos only occasionally. 

The literature on computer vision for event monitoring in NPPs and NPP-related 

facilities is abundant, although, for security reasons, some studies base their results 

on simulated data, which may limit their interpretability. In [55], for example, the 

authors present a computer vision model for automated surveillance, based on 

anomaly detection. The authors train the model on video from a mock-up of a dry 

room for pyroprocessing of spent nuclear material, to monitor for deviations in the 

predetermined path of motion of the material via a gantry crane, and for 

unauthorized persons. 

In [56], the object detection model YOLOv7 was trained on real surveillance 

camera data to look for and track the (usually planned) movement of spent nuclear 

fuel casks, with the purpose of reducing the amount of video that the operators 

then have to watch. The operators are tasked with manually inspecting all parts of 

the video covering the movement to look for anomalies, which is extremely time-

consuming; the proposed solution could potentially cut out all parts that are not 

covering the moving casks. 

Drone detection as a security measure for, e.g., NPPs, is discussed in a paper by 

[57], where YOLOv5 is used to differentiate drones from birds with high accuracy. 

These and other studies on various forms of monitoring show the potential of 

current computer vision for applications in NPPs, but in particular data is still an 

issue in many cases. For example, how to capture a sufficient number of samples of 

normal events in, e.g., a room in an NPP may not always be entirely clear if the set 

of possible events classified as normal is very large. Similarly for detection models, 

if an object class has a lot of variation in terms of visual characteristics – which is 

the case for the classes ”drone” and ”bird” – it is important to capture this 

variation in the dataset. One solution here can be generation of synthetic data, 

which can increase the variation in the datasets significantly; another solution is to 

explore the use of multi-modal vision models, in which a richer ”understanding” 
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of the objects of interest may be instilled via training on additional data modalities 

that also describe aspects the objects, like their sound profiles. 

Visual anomaly and quality inspection Another important safety measure in 

NPPs is visual anomaly and quality inspection. The computer vision techniques 

discussed in Sec. 4.2.1 enable automation of various NPP inspection processes, 

such as wear and tear of various components in the plant (e.g., pipes and turbines), 

the condition of welds and bolts, the structural integrity of walls and other parts of 

the plant building itself, and the quality of the nuclear fuel. 

Cracks are a common type of wear or damage in NPPs, which is why a lot of 

research in computer vision for NPP applications is focused on crack detection. A 

recent example is Yu et al. [58], who proposed a crack detection model based on 

image segmentation for detection of cracks in nuclear containment buildings. The 

model, which uses a U-shaped neural network architecture with convolutional 

layers, was trained on 400 raw images of cracks and shows very good performance 

on the researchers’ own dataset as well as on the public DeepCrack dataset31. It is 

also able to accurately measure the size of the cracks. 

Image segmentation is also the basis of another recent crack detection model 

proposed by Li et al. [59], in this case for inspection of nuclear fuel pellets. Their 

work focuses on the data annotation process, which is particularly time-consuming 

for image segmentation, as discussed in 4.2.1. They integrate into their detection 

model a novel method for automatic transformation of simple bounding box 

annotations into the more complex segmentation masks that segmentation models 

require as training input. This method significantly reduces the annotation time, 

while still performing comparably to segmentation models trained on human-

annotated segmentation masks. 

A different kind of task that can also benefit from computer vision is reading of 

analog NPP equipment gauges to detect anomalous values. This is currently done 

manually as part of the frequent inspection rounds that operators are required to 

do in most, if not all, NPPs [60]. The readings could be automated either by 

mounting cameras in the NPPs that constantly monitor the gauges using an OCR 

model, or by mounting them on mobile robots or drones, as demonstrated by the 

American company Boston Dynamics32. However, security regulations may be a 

roadblock for either of these solutions. 

Digitization and Digitalization of Engineering Drawings Many NPPs are in 

possession of old, hand-drawn engineering drawings (EDs) of plant facilities and 

components such as reactors, piping, and electrical systems (Fig. 6) that only exist 

as physical documents or as image documents in, e.g., PDF or TIFF format. While 

some of these drawings describe obsolete facilities and components or are 

prohibited from going through even the most basic level of digitization due to 

security concerns, other EDs are still both relevant and permitted to fully digitize. 

The process of digitizing an ED involves scanning it into an image and from this 

image convert its elements, such as text, symbols, and lines, into a format that 

 
31 https://github.com/yhlleo/DeepCrack/tree/master/dataset 
32 https://bostondynamics.com/solutions/inspection/visual/ 
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allows for manipulation of these elements as well as for text search. This essentially 

means converting the image into a format that can be interpreted by CAD 

software. 

Software for digitizing EDs has been available for decades, but despite this the 

digitization process still requires a lot of manual work, especially in cases where 

the EDs are very complex, contain notes or densely packed elements (in particular 

notes and elements in non-standard fonts or shapes), or are damaged or covered in 

dirt. For a very long time the best ED digitization software relied heavily on 

hardcoded algorithms, but in the last few years AI-based computer vision as a tool 

for ED digitization has become a very active area of research and now seems likely 

to become the new standard. However, while many different computer vision 

models, including the YOLO model family and various segmentation models, have 

been evaluated for different aspects of the digitization process, such as symbol 

detection and recognition, challenges remain. As discussed in a recent review 

article [61], there is a general lack of public ED datasets, and even when data exists, 

it is often not annotated. Annotations are needed for supervised learning 

approaches, such as object detection. Synthetic datasets with automatically 

generated annotations is being explored as one way to overcome these challenges. 

 

Figure 6: Mid 1900s engineering drawing of a reactor containment building and its in- 

ternals. Source: Connecticut Yankee Atomic Power Company, creator, Public domain, via 

Wikimedia Commons. 

 

In the last two years, research has also been published on ED digitization using 

vision capable multi-modal LLMs like GPT-4o and Claude 3 Opus. In one such 

study [62], the authors conclude that even the best performing model, GPT-4o, is 

still significantly limited when it comes to visual ED analysis. 
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5 AI in the Nordic Nuclear Industry: Current 
Initiatives and Future Needs 

The interviewed NPP licensees have all been working with various types of AI 

over the years, including NLP (pre-ChatGPT) and computer vision models, for 

many different applications. Based on the interviews, we here briefly discuss some 

of their past and ongoing NLP and computer vision projects, as well as their future 

needs with respect to applications in these areas. 

5.1 LLM PROJECTS IN THE NORDIC NUCLEAR INDUSTRY 

Some of the interviewed NPPs have already started working with generative 

LLMs. Due to security reasons, installing local instances of LLMs is something they 

are looking into actively, but the hardware requirements make this challenging 

from a cost perspective, as discussed in Sec. 6. 

One of the licensees is currently testing an offline, locally hosted small open 

weights LLM for document processing, but it can only handle a few documents at 

a time, which limits its usefulness. Two NPPs are evaluating Microsoft Copilot (a 

chatbot based on a licensed version of OpenAI’s GPT-4) for the same purpose, but 

at least one of them is only allowed to do so on public data. The experiences from 

the Copilot evaluations have generally been positive. 

Two of the interviewed NPPs stated that they are using ChatGPT and Copilot for 

programming; one example given was Visual Basic code generation for processing 

of Excel spreadsheets. 

Lastly, one NPP mentioned that they have previously developed a document 

retrieval system based on a combination of BERT and clustering algorithms, for 

retrieval of fuel damage incident reports, to narrow down the number of reports 

that then have to be manually searched. However, this system is not currently in 

use. 

5.2 LARGE LANGUAGE MODELS: NEEDS AND INTERESTS 

The use cases for large language models in the nuclear industry are, as discussed in 

Sec. 4.1, numerous and potentially very impactful. This was also reflected in the 

interviews, which focused heavily on LLMs. 

All interviewed NPP licensees are interested in and see a need for LLMs, but 

virtually all applications they would like to explore require that the LLMs can 

access classified data. 

Since such data must not leave the NPP premises, this excludes the use of closed 

source models, which are accessible only via the cloud. As mentioned in the 

previous section, some of the licensees already have locally hosted, small LLMs up 

and running for experimentation, but both they and the other licensees see a need 

for more work on how to properly set up the infrastructure for these compute-

intensive models, as well as a need to better understand which out of the plethora 
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of available open LLMs to go for. They also want to understand how they can 

create LLM-based systems that strictly adhere to their internal regulations that 

cover how documents should be handled. Operators that do not have clearance to 

access documents at a certain classification level should never be presented with 

these documents by the system, or with any content from these documents, other 

than at most their titles. 

The licensees see the potential for many different applications. The central theme 

during the interviews was the many ways in which LLMs can interact with 

documents. Most document-related applications mentioned can be mapped to the 

ones listed in Sec. 4.1.5. 

For example, it was brought up that project reports and reports on things that 

happen in the plant, like incidents and equipment failures, would be great to use 

for improvements of, e.g., work routines, root cause analyses, and maintenance 

plans, and for coming up with suggestions for future research projects. The 

challenge is that the extremely large number of such reports at each plant often 

makes it difficult to retrieve the relevant ones, and even more so to then read and 

comprehend their contents and use this comprehension to suggest solutions or 

potentially useful ideas. A RAG or RAG-like system utilizing the power of LLMs is 

viewed by the NPP licensees as a promising candidate for meeting this challenge. 

5.3 COMPUTER VISION PROJECTS IN THE NORDIC NUCLEAR INDUSTRY 

A few of the licensees are working or have worked on projects centered on 

computer vision. Some of these projects are connected to parts of the licensees’ 

non-NPP related businesses but are still relevant as they address similar challenges 

as those encountered in NPPs and use NPP-applicable computer vision techniques. 

In one such project, camera-equipped drones were used for crack detection in a 

hydroelectric dam; in another, computer vision was used to monitor, count, and 

classify fish in the fish ladder by a hydroelectric plant. 

Other projects are directly about NPPs. One licensee is considering investigating 

computer vision for crack detection in an ongoing project on long-term 

underground storage of nuclear waste. To better understand the potential risk of 

radioactive leakage from the storage facilities, holes are bored into the ground to 

map out cracks, and this mapping could benefit greatly from full automation using 

computer vision. In a related project, the task is to use LiDAR to scan the walls of 

the tunnels leading to the waste storage facilities, and then, potentially, use 

computer vision to map all rock bolts in the walls. 

Moreover, computer vision is currently being used by two licensees to inspect the 

metal rods containing the nuclear fuel pellets for potential quality issues, and two 

licensees are using the computer vision-based commercial TrueFlaw system33 for 

the inspection of cracks in welds and for gas leakage monitoring. The TrueFlaw 

system uses both radiology and ultra sonic testing for fault detection, and edge 

computing (the “TrueflawBox”) that works completely disconnected from the 

internet. In a first field trial with EPRI, conducted in April 2022, it has shown the 

 
33 https://trueflaw.com/ml 
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potential for great time savings in the inspection of reactor pressure vessel head 

penetrations: The system was used to scan the entire dataset (a 7.1km trace) and 

perform anomaly detection, highlighting all areas in the data requiring more 

thorough review. This reduced the amount of data requiring manual review by 

humans to 140m, or 5% of the full data, leading to both time savings and 

potentially higher fault detection rates, as fatigue on the side of the inspectors from 

prolonged review of healthy sections is drastically reduced34.  

Lastly, in a rather different type of project, one of the licensees is looking at ways to 

use computer vision to convert video data to 3D environments for operator 

training in virtual reality. AI for 2D-to-3D image conversion and novel view 

synthesis (essentially filling in the empty space between images taken from 

different spatial viewpoints of the same scene) has become increasingly powerful 

in recent years, thanks to AI models like Neural Radiance Fields (NeRFs) [63]; 

however, in the aforementioned project, the investigated technique, Gaussian 

splatting, which is currently considered state-of-the-art, actually relies on 

handcrafted algorithms [64]. 

5.4 COMPUTER VISION: NEEDS AND INTERESTS 

 

One of the licensees is very interested in digitization of their engineering drawings 

from the 1980s specifically into CAD drawings a topic discussed in Sec. 4.2.2. 

Automatic monitoring for component degradation for predictive maintenance is 

something several licensees see as interesting, and computer vision could be one of 

possibly several AI technologies to provide such functionality. A specific use case 

that was mentioned was monitoring of fuel rod bending, which is 

Finally, one licensee brought up the fact that some monitoring and inspection they 

would like to be able to do is dangerous to humans due to potentially high 

radiation levels, and here drones could be used, in combination with computer 

vision for automatic analysis of the video streams. 

 
34 https://www.epri.com/research/products/000000003002025510 
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6 Pilot Study: Document Discovery with On-
Premise AI 

This section will outline the pilot study recommended as a follow-up to the AI 

SNAP project. The request for this pilot study entailed a small target budget, and 

the objective and scope were designed to meet this target. 

6.1 BACKGROUND AND MOTIVATION 

Workers in nuclear power plants regularly search through large bodies of internal 

documents, such as incident and inspection reports, operational and maintenance 

logs, manuals, and regulatory documents, for example to prepare maintenance 

procedures. The total amount of these internal documents per power plant is often 

very large – in the scale of hundreds of thousands or even millions of documents – 

and ranging between one and several hundred pages in length. An automated way 

of finding documents related to specific topics or queries could therefore save 

workers substantial amounts of time spent with tedious search work, outlining a 

clear economic incentive for license holders to invest in the technology. Moreover, 

the topic would establish the use of on-premise LLMs in a precisely defined use 

case, and thus present a basis for later LLM-based AI solutions. 

6.2 OBJECTIVE AND SCOPE 

The task of finding the most relevant documents in a body of hundreds of 

thousands is challenging and requires a slightly different approach from typical 

RAG-based retrieval techniques. Multiple approaches, such as dense and sparse 

vector approaches, as well as approaches integrating databases, and combinations 

of the former are possible solutions. At the same time, the details and intricacies of 

the document searches carried out in nuclear power plants need to be well 

understood by the research and development team, requiring workshop sessions 

with licensee personnel actively involved in performing manual document 

searches. 

The aspired project may therefore include work packages around problem 

definition, integration of AI tools into the operator’s workflows, and at its core, AI 

development work packages. The primary objective of the proposed project is to 

explore the feasibility of LLM-based document search on a massive scale. The main 

deliverables would be a proof-of-concept semantic search engine for large bodies 

of documents (i.e., as a python application), as well as a report outlining the 

determined technical and user interface-related requirements, the results of the 

conducted experiments and a description of the solution implemented in the proof-

of-concept solution. 

6.3 TECHNICAL REQUIREMENTS: LOCALLY HOSTED LLMS 

This section discusses hardware requirements for locally hosted LLM solutions – 

as planned for the outlined project – providing some technical background on this 
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topic, as well as illustrating various options and expected impact on model 

performance. This is relevant to the planned pilot project because, as outlined in 

section 3, any solution targeted at use inside a nuclear power plant will have to be 

hosted on a local server on the premises of the licensee, either in an office building, 

or inside the power plant itself. Owing to the technical nature of this topic, a TLDR 

summary is provided below. 

Due to the size of LLMs, hardware requirements for locally hosted LLMs are 

dominated by the requirement for VRAM (video RAM, i.e., graphic memory) on 

the host system. While central processor (CPU), system memory (RAM), and 

storage (SSD) should fulfil certain minimum requirements, the graphics processing 

unit (GPU) is by far the most decisive factor for inference speed (i.e., speed of the 

model in production, in tokens or words per second) and the available video 

memory (VRAM), located on the GPU itself, is in almost all cases the central 

hardware-related bottleneck for the deployment of LLMs. 

To date, most machine learning models, including LLMs, are both trained and run 

on GPUs, which requires the model and its parameters to be loaded into VRAM. 

LLMs are typically between 14GB and 800GB large, a result of∼3-400 billion 

parameters stored, by default, at a floating point (FP) precision of 16bit (2 bytes) 

each. In other words, at identical parameter count and bit rate (FP precision), size 

differences between different releases (e.g., LLAMA2, LLAMA3, Mistral) will be 

negligible. A technique called ”offloading”, where only part of a model is loaded 

into VRAM at a time, allows for working with models larger than the system’s 

VRAM capacity, but leads to significant reduction in processing speeds, and 

should only be considered as a last resort. 

A popular technique to reduce a model’s size and thus VRAM requirement is 

quantization. Here, the native 16bit FP precision is getting reduced to lower bit 

rates, or compression factors (8, 4, 3, 2, or even 1bit). The lower precision of stored 

model parameters leads to less precise computation and typically deteriorates 

model performance. However, LLMs process data in highly parallel signal paths, 

creating computational redundancy and therefore robustness against smaller 

errors. Moreover, in the process of quantization, various techniques can be used to 

further lessen the impact of the reduction in precision, and to maintain precision 

while reducing the required memory space [65]. In practice, even 2bit quantization 

has been shown to suffer losses of as little as 10-20% in relative task performance 

[66], while VRAM demand is dramatically reduced, and inference speed is often 

increased. We therefore favor quantized models for inference tasks for any VRAM-

constrained system. 

Fine tuning is a technique where the network’s parameters are updated in another 

round of training after the ”main” training (often referred to as pre-training) has 

concluded. This is typically used to make the model perform better on a specific 

task, and/or data within a specific domain. Traditionally, in fine tuning all 

parameters of a model are optimized. However, this comes with major additional 

VRAM requirements: The model needs to be represented in its native, typically 16 

bit precision to make for a smooth error landscape, and for each trainable 

parameter the GPU needs to store the parameter itself, its gradient, and – with 

modern optimizers – moving averages over past gradients and squared gradients, 



 ON-PREMISE AI SOLUTIONS FOR NORDIC NUCLEAR APPLICATIONS 
 

37  

 

 

 

resulting in four 16 bit values to be stored per parameter, and thus 4x the VRAM-

requirement compared to inference runs at the native bit rate. To alleviate this 

issue and to allow fine tuning even with quantized models, various so-called 

parameter-efficient fine tuning (PEFT) techniques have been developed in recent 

years. Typically, they leave the pre-trained model itself largely untouched (or 

”frozen”) during fine-tuning, but insert trainable layers in between the existing 

ones [67], extend the embedding spaces with additional, trainable parameters [68], 

[69], or using smaller low rank matrices to approximate parameter updates for 

much larger weight matrices, accumulating these, and only updating the frozen 

pre-trained weight matrices once at the end of the process [65]. Overall, while 

traditional fine-tuning of all parameters yields the highest performance on average, 

PEFT techniques can often get close while keeping additional VRAM demand 

moderate. 

 

 LLAMA3-70B 
2bit + RAG 

LLAMA3-70B 
3bit + RAG 

LLAMA3-70B 
4bit + RAG 

LLAMA3-70B 

16bit + RAG 

VRAM demand 21GB+ 30GB+ 40GB+ 150GB+ 

Suggested GPU 4090 A6000 A6000 2xA100 

GPU VRAM 24GB 48GB 48GB 2x80GB 

GPU 
architecture 

Ada Lovelace Ampere Ampere Ampere 

GPU release 2022 2020 2020 2020 

Hardware price ~50k SEK ~80k SEK ~80k SEK ~500k SEK 

Table 4: Overview of LLM quantization steps (for LLAMA3 models) and hardware requirements (as of 
June 2024). 

 

Finally, Retrieval-Augmented Generation (RAG) techniques make it possible to 

improve the output of LLMs for specific domains (e.g., a company’s internal 

documentation and laws applicable to the company’s business areas), by changing 

the prompt input to the LLM, instead of the parameters of the LLM itself. For this, 

a separate language embedding model is used to find semantically related 

passages in a stack of external documents (e.g., PDFs), then adding these passages 

to the LLM’s input prompt. While this does come with additional VRAM 

requirements for the embedding model, these models are typically small compared 

with LLMs, often in the range of 0.5-2GB [70]–[73]. 

Overall, a reasonable approach for any resource-constrained environment is to use 

quantized LLMs, add a RAG system if needed for the targeted use case, and 

evaluate the performance of this system before considering the more resource-

intense and effort-laden step of fine-tuning the model. 

An overview of exemplary model choices and appropriately matched AI 

workstation systems (as of September 2024) is provided in 4. This overview is 

meant to provide a rough point of orientation for the cost factor and options 

involved in AI workstation systems to date. Note that this overview is expected to 

be outdated with the arrival of the newest generation of NVidia GPUs and AI 

workstation cards expected in late 2024 to early 2025. 



 ON-PREMISE AI SOLUTIONS FOR NORDIC NUCLEAR APPLICATIONS 
 

38  

 

 

 

TLDR; The most important hardware specification for systems running large 

language models (LLMs) is the graphics card (GPU), and in particular its video 

memory (VRAM) capacity. LLMs are typically between∼6GB and∼800GB large but 

need to fit into VRAM to run at acceptable speed. Compression techniques can 

reduce the VRAM demand to a quarter of the original size but come with small to 

moderate reductions in model performance. Fine-tuning and retrieval augmented 

generation (RAG) techniques can be used to improve LLM performance in specific 

domains. Exemplary model choices and appropriate hardware configurations for 

LLMs are provided in Table 4. 
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This report explores the implementation of on-premise AI solutions in the Nordic nuclear 
energy industry. It highlights the potential of natural language processing and computer 
vision technologies to enhance efficiency, safety, and decision-making in nuclear power 
plants. It addresses key challenges such as data handling and security, along with 
promising applications of large language models and retrieval-augmented generation 
(RAG) systems. The report also reviews ongoing AI initiatives and proposes a pilot study 
for developing a semantic search engine. This comprehensive analysis provides valuable 
insights for future AI projects in the nuclear sector.. 

Ett nytt steg i energiforskningen
Forskningsföretaget Energiforsk initierar, samordnar och bedriver forskning och analys 
inom energiområdet samt sprider kunskap för att bidra till ett robust och hållbart 
energisystem. Energiforsk är ett politiskt neutralt och icke vinstutdelande aktiebolag som 
ägs av branschorganisationerna Energiföretagen Sverige och Energigas Sverige, det statliga 
affärsverket Svenska kraftnät, samt gas- och energiföretaget Nordion Energi. Läs mer på 
energiforsk.se.
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