

Herting power plant

- Herting HPP at the river Ätran, Sweden
- 3 Km upstream river mouth
- Catchment area of 3,342 km²
- Mean annual discharge of 57 m³/s
- Migrating species, such as European eel, Atlantic salmon, Sea trout
- Major modifications in 2013

Kjærås et al. 2022

The problem

- Fish pass construction is expensive
- build-and-test approach

Can we develop a predictive tool that tells us how the fish will behave at given hydraulic conditions?

There are studies predicting

the swimming behavior of fish

Keep heading in t-1

the flow

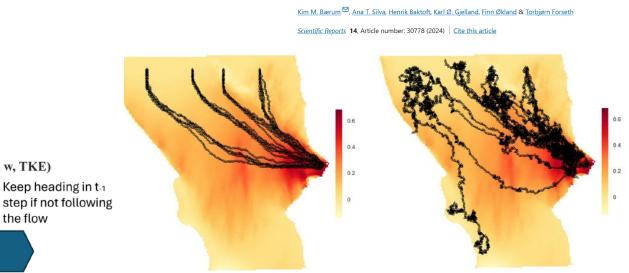
P (Follow the flow | u, v, w, TKE)

No

Generate

random

heading


P (Swim-direction | u, v, w, TKE)

Yes

scientific reports

Predicting fine-scale downstream migratory movement of Atlantic salmon smolt (Salmo salar) in front of a hydropower plant

How does the water flow affect the swimming behavior?

Artificial Neural Networks can use complex patterns

Building an IBM that learns to predict the next position of an eel from multiple variables

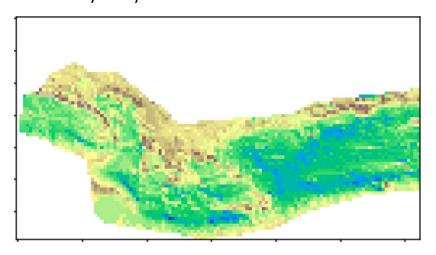
Predictor variables:

- Acoustic Telemetry Tracking data of 98 silver eels
- River Bathymetry
- CFD modelled water flow
- Temperature

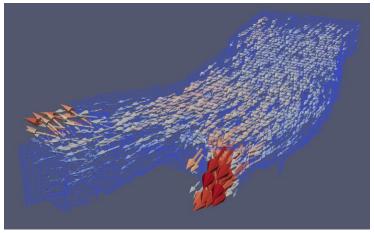
Advantage:

- Account even for fish population and character traits
- Parameter importance revealed from variable exclusion
- Output are swimming trajectories

General Eel data Environmental (Population, character parameters data traits, trajectory (Fish number. (Bathymetry, Flow) metrics) swimming direction) Swimming trajectories Model makes a swimming decision for every eel at the given time


Dr. Joschka Wiegleb

6


The eel data set

The Bathymetry and water flow

River Bathymetry

CFD modelled water flow vectors

Testing the approach

General parameters Environmental data Eel data (Fish number, swimming (Bathymetry, Flow) (Population, character traits) direction, swimming rules) Swimming trajectories Model makes a swimming decision for every virtual eel at the given time

Virtual eel in futuristic aquatic setting created by ChatGPT

IBM creates a virtual data set

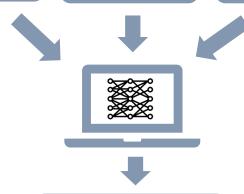
Can we train a Deep Neural Network to predict the next swimming step on the information perceived by the fish?

30 eels over 2000 time steps

Example data set with known patterns:

- Environmental factors (Bathymetry)
- Individual eel characteristics

Training an Al model on the swimming data


Environmental data (Bathymetry, Flow)

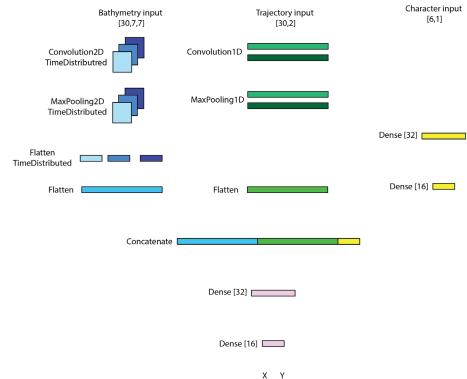
Eel data

(Population, character traits, trajectory metrics)

General parameters

(Fish number, swimming direction)

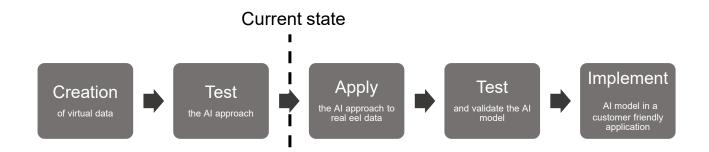
Swimming trajectories


Model makes a swimming decision for every eel at the given time

Virtual eel in futuristic aquatic setting created by ChatGPT

The CNN architecture

- Convolutional Neural Network with three inputs
- Prediction of the next position
- Eel have memory of 30 frames
- Model accounts for bathymetry around eel positions
- Model accounts for eel characteristic traits


Fitting the model to virtual tracks

•

Implementing the Almodel in the IBM

- IBM rules replaced by the CNN
- The eels have the same characteristic traits as the training eels

Conclusion

Outcome:

- A **predictive tool** for eel behaviour
- Predicition of behaviour in eel populations with different characteristic traits
- Parameter importance by manupulation of the model input

