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Herting power plant

« Herting HPP at the river Atran,
Sweden

* 3 Km upstream river mouth
« Catchment area of 3,342 km?
« Mean annual discharge of 57 m3/s

« Migrating species, such as
European eel, Atlantic salmon, Sea
trout

« Major modifications in 2013

Kjeeras et al. 2022
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The problem

» Fish pass construction is expensive

* build-and-test approach

Can we develop a predictive tool that tells us how
the fish will behave at given hydraulic conditions?
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There are studies predicting
the swimming behavior of fish
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Article ‘ Open access ‘ Published: 28 December 2024

Predicting fine-scale downstream migratory movement
of Atlantic salmon smolt (Salmo salar) in front of a
hydropower plant
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Presenter Notes
Presentation Notes
Models show a dependency of behavior on the flow. The question is which?


How does the water flow affect the swimming
behavior?

Water Personality
quality

Social

interactions

Fish size and River
age bathymetry

Illustration: Jennifer Clausen
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Artificial Neural Networks can use complex

patterns
D ER ER

Building an IBM that learns to predict the next position
of an eel from multiple variables
Predictor variables:

* Acoustic Telemetry Tracking data of 98 silver eels
*  River Bathymetry

* CFD modelled water flow

* Temperature

Advantage:

* Account even for fish population and character
traits

*  Parameter importance revealed from variable
exclusion

*  QOutput are swimming trajectories
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The eel data set
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The Bathymetry and water flow

River Bathymetry CFD modelled water flow vectors

Dr. Joschka Wiegleb



Virtual eel in futuristic aquatic setting created by ChatGPT
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IBM creates a virtual
data set

Dr. Joschka Wiegleb

30 eels over 2000 time steps
Example data set with known patterns:
Environmental factors

(Bathymetry)
Individual eel characteristics
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Training an Al model on
the swimming data

Virtual eel in futuristic aquatic setting created by ChatGPT
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The CNN architecture

* Convolutional Neural Network with
three inputs

» Prediction of the next position
* Eel have memory of 30 frames

* Model accounts for bathymetry
around eel positions

* Model accounts for eel
characteristic traits

Dr. Joschka Wiegleb
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Fitting the model to virtual tracks

Dr. Joschka Wiegleb
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Implementing the Al
model in the IBM

IBM rules replaced by the CNN

The eels have the same characteristic traits as the
training eels

Dr. Joschka Wiegleb 15



Conclusion

Current state

Creation Test Apply Test

the Al approach to and validate the Al

of virtual data the Al approach real eel data model

Outcome:
- Apredictive tool for eel behaviour

- Predicition of behaviour in eel populations with different
characteristic traits

- Parameter importance by manupulation of the model input

Dr. Joschka Wiegleb

Implement

Al model in a
customer friendly
application
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