Potential for upgrading and extention of HPP with environmental upgrades - PotOUt

SVC, 18.03.25

Prof. Leif Lia, NTNU

Background for the upgrading potential in Norway

34 000 MW / 138 TWh installed

- > 1600 power plants
- > 80 TWh in reservoir capacity

Connections to SE, DK, FI, DE, UK and NL

Multidisciplinary project in HydroCen

- Ingrid Vilberg, Ana Adeva-Bustos, Atle Harby and Michael Belsnes, Sintef Energy
- Leif Lia and Ole Gunnar Dahlhaug, NTNU
- Torbjørn Forseth, Tonje Aronsen, Marie-Pierre Gosselin, Line Sundt-Hansen, NINA
- Carl Andreas Veie, Norw. Water and Energy Dir. - NVE

What is the actual U/E potential?

Lia, Aas & Killingtveit, 2017: Estimated 20 – 30 TWh based on average achivement from 30 projects

Downscaled to **15 – 20 TWh** per 2021

NVE: Technical-economical potential is **7,6 TWh**.

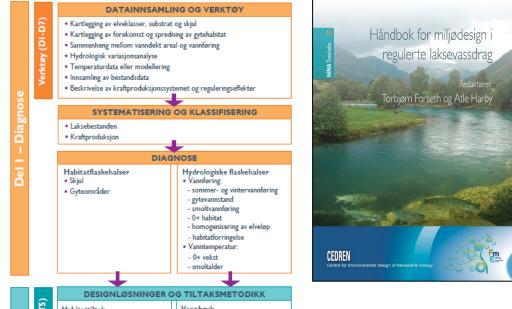
3,2 TWh is based on announced upgrading projects

4,4 TWh coming from upgrading of turbines

Upgrading and Extention U/E

• **Upgrading** is a measure to increase the efficiency of the power plant or reduce head and efficiency losses in the system

- Extention is a measure which utilize more water or more head
 - Diversion of new catchments
 - Increased head
 - Reduced spilling



Extension and upgrading of HPP with environmental upgrades

**Cartlegging av Verkdassers, substrat og skjul environmental upgrades

**Cartlegging av Verkdassers, substrat og

- A holistic approach to upgrades in developed rivers
- Design of a healthy eco-system
- Methodology developed in two decades, latest in FME HydroCen
- The goal is to find solutions with benefits for both power generation and the environment

Methodology for complex projects

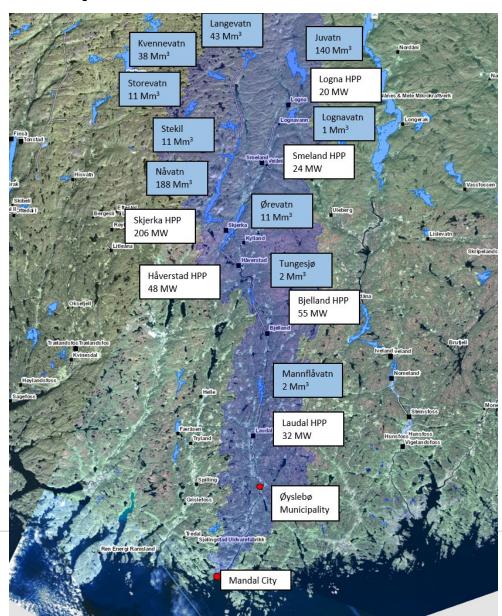
- Deck of cards method developed in Alterna Future
- Screening of possibilities and challenges in partnership with the power company
- Composition of cards from hydropower generation and environmental upgrades
- Goal: Find the 'perfect' mix with improvements for the society, hydropower and the environment

Introduction to *Deck of cards - method*

Purpose:

- Development of complex scenarios for extreme upgrading
- 2. Find the best projects and the best combinations of projects
- 3. Maximizing results and evaluation of the total result

(Inventors: Leif Lia and Kaspar Vereide)



First tested in the Mandal Hydropower Scheme

- Example

- 140 km river stretch
- From 1160 m.a.s.l to outlet in the sea
- Six existing HPPs
- Totally developed P = 384 MW
- Annual production E = 1,7 TWh

Hydropower

Byggekostnad: 810 mill. kr Energiproduksjon: 75 GWh Turbintype: Vertikal Francis

Brutto fallhoyde: H₀ = 180 m Aggregater: 1x240 MVA Slukeevne: $Q_{\rm peak}=130~\text{m}^3/\text{s}$ Tunnellengde: L = 18 km Tunneltversnitt: A = 65 m² Fartstall: 0.52

Designprinsipp: Tredoble installert effekt

Energiproduksjon: 140 GWh Turbintype: Vertikal Francis P = 400 MWBrutto fallhøyde: $H_0 = 357 \text{ m}$ Aggregater: 1x465 MVA Slukeevne: $Q_{prod.} = 120 \text{ m}^3/\text{s}$

Frekvensomformer: 1x130 MVA Tunnellengde: L = 1,8 km Turtall: 214,3 Fartstall: 0,32 Tunneltverrsnitt: A = 60 m²

Slukeevne:

A.4 Laudal kraftverk

Turbintype: Vertikal Francis

Frekvensomformer: 1x21 MVA

Aggregater: 1x75 MVA

Turtall: 62.5

Fartstall: 0,71

Designprinsipp: Tredoble installert effekt

P = 64 MW

 $Q_{pool} = 220 \text{ m}^3/\text{s}$

Byggekostnad: 450 mill. kr

Brutto fallhoyde: Ho = 36 m

Tunnellengde: L = 6 km

Tunneltverrsnitt: A = 110 m

Slukeevne:

B.1 Storevann - Ørevatn

Designprinsipp: 500 MW pumpekraft Byggekostnad: 1000 mill. kr

Energiproduksjon: 140 GWh P = 500 MWTurbintype: Vertikal pumpeturbin Brutto fallhovde: Ho = 357 m Aggregater: 2x290 MVA Frekvensomformer: 2x290 MVA $Q_{prod.} = 150 \text{ m}^3/\text{s}$ $Q_{pumpe}=120\;m^3/s$ Pumpestart: Frekvensomformer

Tunnellengde: L = 2,5 kmTurtall: 187,5 Tunneltverrsnitt: A = 80 m² Fartstall: 0,32

B.2 Ørevatn - Bjelland

Designprinsipp: Pumpe opp vann fra Kosåna og tilsiget Energiproduk P_{mod} = 120+230 MW

 $P_{pumps} = 70+230 \text{ MW}$ Brutto fallhøyde: $H_0 = 180 + 357 \text{ m}$ $Q_{pool} = 82+72 \text{ m}^2/\text{s}$ $Q_{poolp} = 30+55 \text{ m}^3/\text{s}$

L = 18 + 1.5 km

Aggregater: 1x120+2x240 MVA Frekvensomformer: 1x120+2x240

B.3 Nåvatn - Stekilvatn/Kvennevatn/Langvatn/ Storevatnet

Designprinsipp: Pumpe opp vannet fra Kosåna og restfelt Ørevann Byggekostnad: 800 mill. kr. Energiproduksjon: 100 GWh P = 60 MWTurbintype: Vertikal pumpeturbin Aggregater: 1x180 MVA Frekvensomformer: 1x180 MVA Brutto fallhoyde: H₀ = 70-250 m $Q_{post} = 30-125 \text{ m}^3/\text{s}$ rensomformer: 1x180 MVA Q_{pumpe} = 20-60 m³/s Pumpestart Frekvensomformere Tunnellengde: L = 5/10/14/19 km Turtall: 100 - 300

B.4 Langvatn - Juvatn

Designprinsipp: 14 dagers pumpesyklus Byggekostnad: 300 mill. kr

Energiproduksjon: ? Turbintvpe: Vertikal pumpeturbin P = 70 MWBrutto fallhøyde: H₀ = 170 m Aggregater: 1x85 MVA $Q_{prot} = 45 \text{ m}^3/\text{s}$ $Q_{pumps} = 35 \text{ m}^3/\text{s}$ Frekvensomformer: 1x85 MVA Slukeevne: Pumpestart: Frekvensomformer Tunneltverrsnitt: A = 20 m² Fartstall: 0,6

C.1 Øyslebø - Try

Designprinsipp: Energiproduksjon: 75 GWh P = 20 MWTurbintype: Vertikal Kaplan Aggregater: 1x25 MVA Frekvensomformer: 1x5 MVA Słukeevne kraftverk.: Slukeevne flomtunnel: O = 430 m³/s

D.3: Heving Kvennevatnet

Formál: Oke eksisterer

Eksisterende

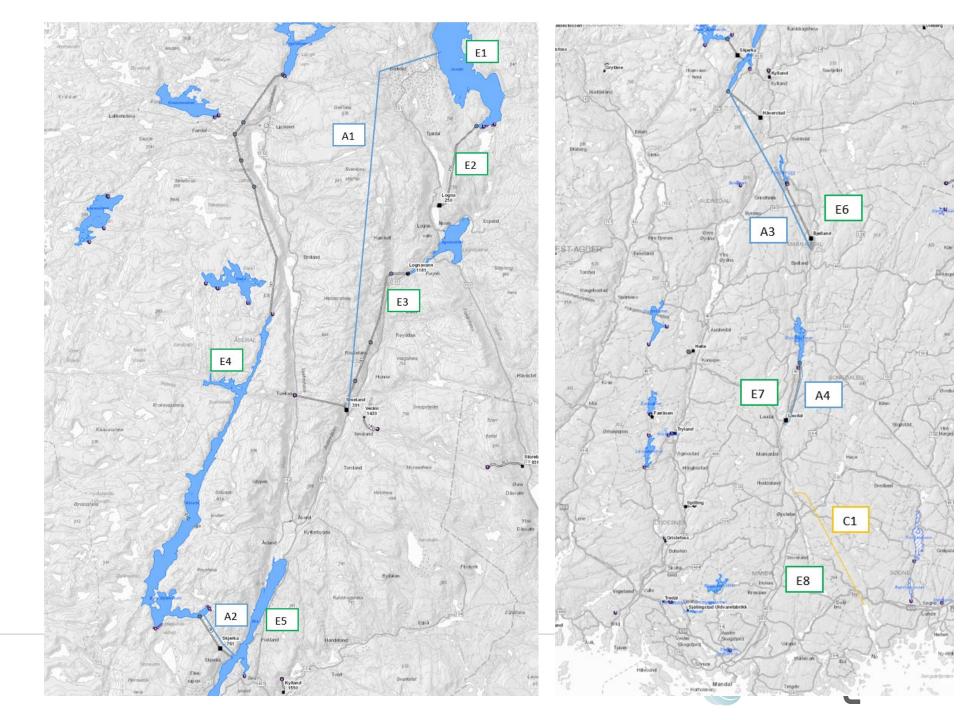
LRV = 745 meh

HRV = 771 meh

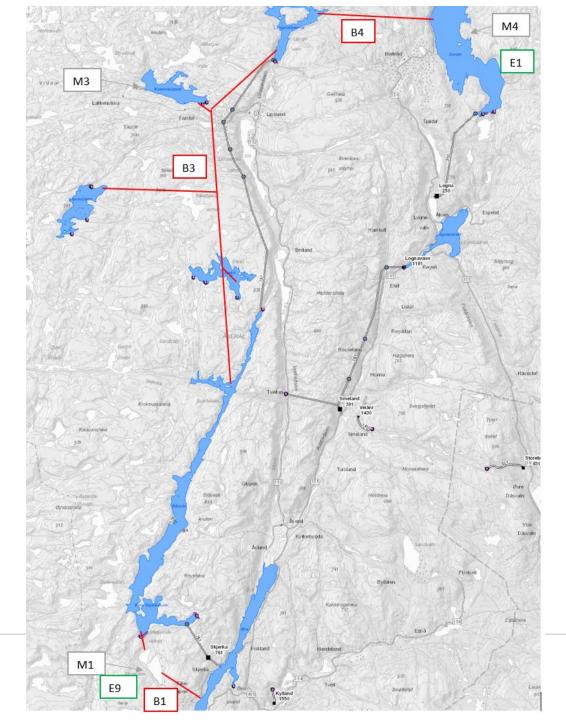
V A = 2 km² V = 38 Mill. m³ Arstilsig = 63 mill. m³ Årstilsig = 63 mill. m3 Volum= 0.15 mill. mi

D.1: Storevatn

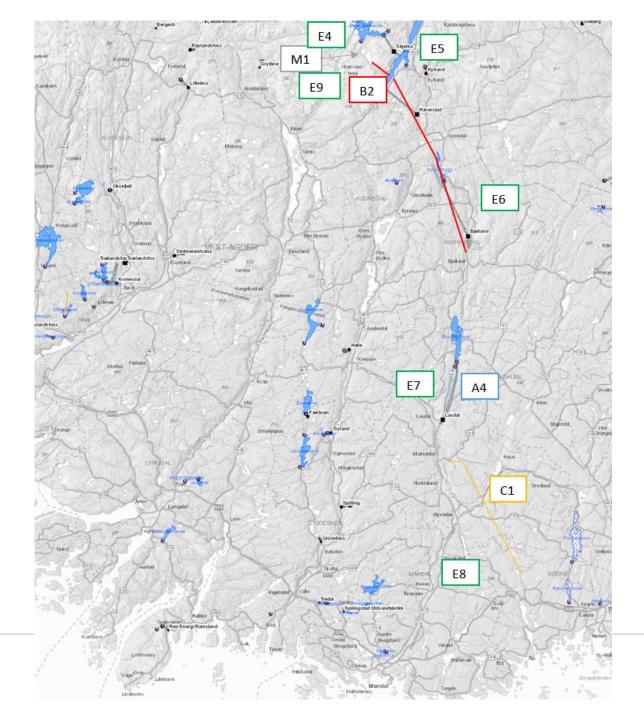
A = 2,7 km² V = 120 Mill. m³ Asstilsig = 13 mill. m³ Asstilsig = 13 mill. m³ Asstilsig = 13 mill. m³ Kostnad: 400 mill. kr. Kostnad: 1,6 mrd. kr.



Environmental upgrades

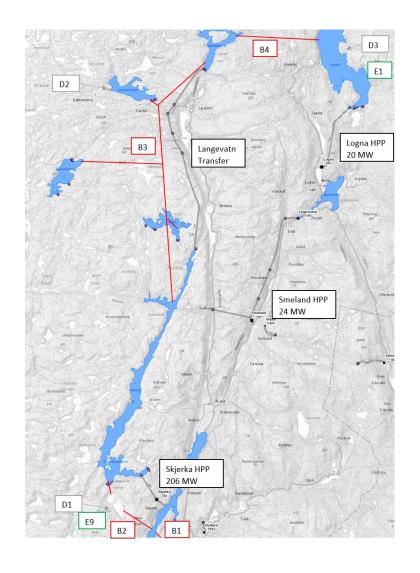


Scenario 1: Triple output



Scenario 2: Maximum flexibility

Scenario 3: Flood dampening



Deck of cards method

- some small tricks

- Do the screening for all possible HHPs develop the cards – give it a value
- 2. Remove 'impossible' cards
- 3. Do the screening for environmental upgrades develop the cards give it a value
- 4. Find possible combinations of the two sets of cards
- 5. Simulate the energy generation
- 6. Evaluate the results

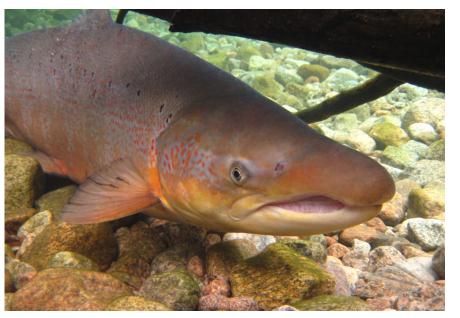
Summary from Deck of Cards-method

- 1. Useful in complex projects
- 2. Makes it possible to have the overview
- 3. Possible assesment of power and environment
- 4. Should be further developed

Projects in the PotOUt-study

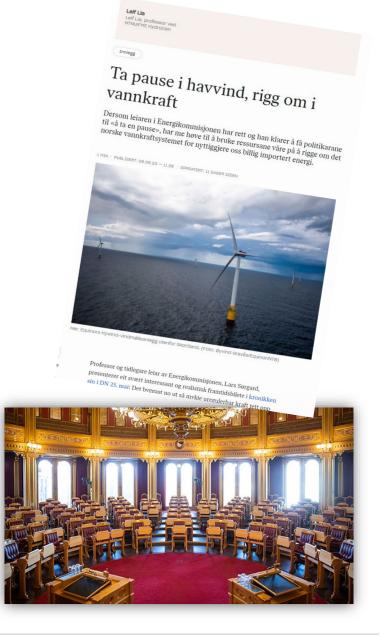
- Project A, Large reservoirs Large existing reservoirs (1800 mill m³) Long tunnels (> 30 km) Medium head Total output 640 MW in five existing power plants
- Project B, Complex system with medium head Complex system with many short tunnels – Several reservoirs – Head 200 – 500 m – Total output 180 MW in three existing power plants
- Project C, Complex high head system Large head (H > 900 m) Long tunnels Several reservoirs High annual precipitation (1500 1900 mm/year) Total output 300 MW in two existing power plants

Main findings from the project

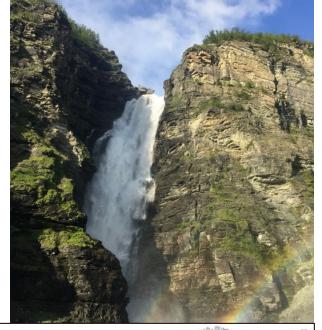

- New parallell tunnels required in all projects
- Possible flexibility between reservoirs
 - Increased output [MW]
 - Pump storage projects PSPs
 - Pumps
- Possible tailrace tunnels to fjords or reservoirs
- Increase of reservoir capacity
 - Increased dam heights, including safety upgrades
 - Revised restriction with minimum negative consequenses
- Diversion to existing reservoirs
 - Increased regulation from non regulated sources
- High cost and low rentability

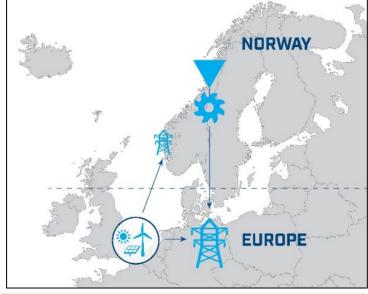
Possible environmental upgrades

- Release of environmental flow
 - Based on environmental criteria
 - Env. flow released through small hydro
- Environmental friendly peaking power (?)
 - Outlet directly in reservoirs or fjords
 - Dampening reservoirs/tunnel systems
- Improvement of habitat
- Solutions for fish migration, up and down
 - Removal of existing weirs
- Controlled temperature in rivers
- New technology for avoiding negative consequenses from pumping



Why upgrade?


- Output [MW] or energy [TWh]?
- Pump storage projects PSPs?
- Which energy prices?
- Which ancillary services is expected from hydropower?
- Changes in taxes?
- How much offshore wind will appear?
- How many intercontinental cables will be innstalled?
- How is the future power system in Norway and in Europe?



Conclusions from PotOUt

- Huge potential for output-increase [MW]
 - Increased energy generation appears as bonus (5%?)
 - From reduced spilling, reduced head loss, higher current reservoir level
- Large extensions may be challenging
 - Protected areas, ownership, tax/politics, possible profit
- Environmental issues must be included from the very beginning
- Several innovations are introduced

Example – Lysebotn II

- New tunnel in parallell
- Production increased from 1 320 to 1 500 GWh (14 %)
- Output increased from 210 to 370 MW (76 %)
- Intake moved to higher reservoir for more head
- New underground power house with two vertical Francis-turbines

Example – Lower Røssåga

- Full new tunnels and power house in parallell
- Upgrade of old units secquentially
- Output increased from 250 til 350 MW (40%)
- Energy generation increased from 1 850 til 2 050 GWh (11%)

Environmental upgrade:

• The river stretch available for spawning and upstream migration was reverted back to original, an increase of 30% for the entire Røssåga river

Foto: Bjørn Grane

