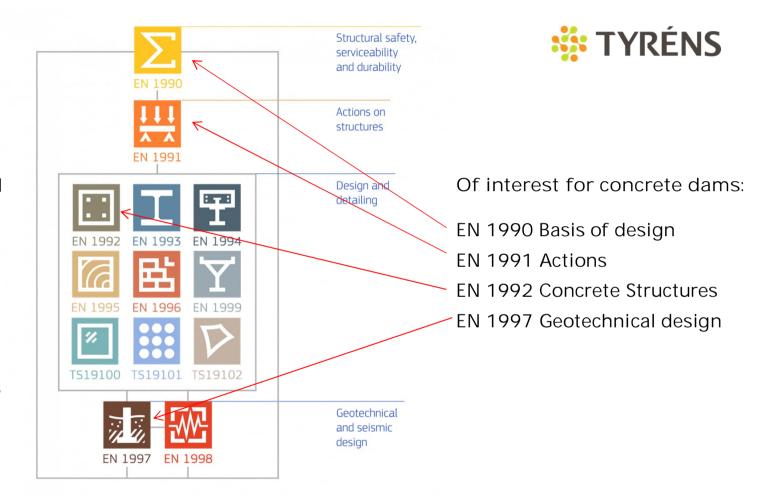


2G EUROCODES – CONCRETE DAMS

Mikael Hallgren

Structural Engineer, Tyréns Guest Researcher/Docent, KTH Concrete Structures

Member and former chair of SIS/TK556 Betongkonstruktioner Convenor of CEN/TC250/SC2/WG1 for 2G Eurocode 2 – Concrete Structures


GAP-Analysis of 2nd Generation Eurocode for Concrete Dams Energiforsk Report 2025:1075 Mikael Hallgren and Fredrik Stenesand, Tyréns

2025-03-19 2 Hydropower R&D days 2025

2nd generation Eurocodes (EC) at a glance

All new 2G ECs will be published in September 2027 at the latest. Publication is ongoing since 2023.

They will replace the current 1G ECs in March 2028 at the latest.

2G EC – CONCRETE DAMS SS-EN 1990:2023 BASIS OF DESIGN

EN 1990 now includes dams!

Table A.1.1 (NDP) — Examples of buildings in different consequence classes

Consequence class	Description of consequence	Examples			
CC4 ^a	Highest	Nuclear power plant, dams			
CC3	High	Buildings or parts of buildings where a very large number of people could be affected by failure, e.g. grandstands, concert halls, high-rise buildings			
CC2	Normal	Buildings or parts of buildings not covered by CC1 or CC3			
CC1	Low	Buildings or part of buildings where very few people could be affected by failure, e.g. agricultural buildings, storage buildings			
CC0 ^a	Lowest	Elements other than structural, see 3.1.1.7.			
For provisions concerning CC0 and CC4, see 4.3.					

Table A.1.9 (NDP) — Consequence factors for buildings and geotechnical structures

Consequence class (CC) ^a	Description of consequences	Consequence factor k _F
CC3	High	1,1
CC2	Normal	1,0
CC1	Low	0,9

a The provisions in Eurocodes cover design rules for structures classified as CC1 to CC3, see 4.3.

But, recommended factor for CC4 is missing...

In RIDAS TV9 (2020), correction factor $\gamma_k = 1.2$.

Proposal $k_F^{CC4} = 1.2$?

2025-03-19 4 Hydropower R&D days 2025

2G EC – CONCRETE DAMS SS-EN 1990:2023 BASIS OF DESIGN

Action or effect				Partial factors $\gamma_{ m F}$ and $\gamma_{ m E}$ for verification cases					
Туре	Group Symbol Resulting effect		Structural resistance ^a	Static equilibrium and uplift ^b		Geotechnical design			
	Verific	ation case		VC1a	VC2(a)b	VC2(b) ^b	VC3c	VC4 ^d	
Permanent	Allf	γ_{G}	unfavourable	1,35k _F	1,35k _F	1,0	1,0		
action (G _k)	Waterl	γ_{Gw}	/destabilizing	1,2k _F	1,2k _F	1,0	1,0		
C-K	Allf	$\gamma_{G,stb}$		1,15e 1,0	not	G_k is not factored			
(Waterl	$\gamma_{\rm Gw,stb}$	stabilizings	not used	1,0e	1,0	used	lactored	
	All	$\gamma_{G,fav}$	favourableh	1,0	1,0	1,0	1,0		
Prestressing (P _k)		γ_p^k							
Variable	Allf	ΥQ		1,5k _F	1,5k _F	1,5k _F	1,3	$\gamma_{Q,\mathrm{red}^{\hat{j}}}$	
action (Q _k)	Waterl	γ_{Qw}	unfavourable	1,35k _F	1,35k _F	1,35k _F	1,15	1,0	
	All	γ _{Q,fav}	favourable	0					
Effects of actions (E) γ_E unfavoural		unfavourable	v is not smalled				1,35k _F		
		$\gamma_{E,fav}$	favourable	γ _E is not applied			1,0		

New partial load factors for water pressure!

In current SS-EN 1990:2002 general load factors for permanent action (1,35) and variable action (1,5) are used for water pressure.

2G EC2 – CONCRETE DAMS SS-EN 1992-1-1:2023 CONCRETE STRUCTURES

Some new design provisions promoting climate-improved concrete structures:

- Allows reference age for concrete strength up to 91 days to utilise the increased (but slow) strength development in concrete with new SCMs (FA, GGBS, etc.)
- Exposure Resistance Classes (ERC) for improved assessment of durability of both normal OPC concrete and new SCM concrete;
- Design provision for Recycled Aggregate Concrete Structures;
- New appendix for assessment of existing concrete structures Re-use!

2G EC2 – CONCRETE DAMS EXPOSURE RESISTANCE CLASSES (ERC)

• Durability of concrete is classified based on the performance => opens up for new SCM concrete

Concrete cover for Carbonation (XRC)

P) — Mini	mum conc	re <mark>t</mark> e cover	c _{min,dur} for	carbon re	inforcing s	teel — Car	bonatio	
Exposure class (carbonation)								
XC1		XC2		XC3		XC4		
		De	sign servi	ce life (yea	rs)			
50	100	50	100	50	100	50	100	
10	10	10	10	10	10	10	10	
10	10	10	10	10	15	10	15	
10	15	10	15	15	25	15	25	
10	15	15	20	20	30	20	30	
10	20	15	25	25	35	25	40	
15	25	20	30	25	45	30	45	
15	25	25	35	35	55	40	55	
15	30	25	40	40	60	45	60	
	50 10 10 10 10 10 10 15 15	XC1 50 100 10 10 10 10 10 15 10 15 10 20 15 25 15 25	Expo XC1 XC De 50 100 50 10 10 10 10 10 10 10 15 15 15 15 15 15 15 15 15 15 15 15 15	Exposure class XC1 XC2 Design service 50 100 50 100 10 10 10 10 10	Exposure class (carbona XC1 XC2 XX Design service life (year 50 100 50 100 50 10 10 10 10 10 10 10 10 10 10 10 10 15 15 15 15 10 15 15 20 20 10 20 15 25 25 25 15 25 25 25 35 35 35	Exposure class (carbonation) XC1 XC2	XC1 XC2 XC3 XC3 Design service life (years) 50 100 50 100 50 10 10 10 10 10 10 10 10 10 10 10 10 10 10 15 10 15 15 25 15 10 15 15 20 20 30 20 10 20 15 25 25 35 25 15 25 20 30 25 45 30 15 25 25 35 35 55 40	

NOTE 1 XRC classes for resistance against corrosion induced by carbonation are derived from the carbonation depth [mm] (characteristic value 90 % fractile) assumed to be obtained after 50 years under reference conditions (400 ppm CO₂ in a constant 65 %-RH environment and at 20 °C). The designation value of XRC has the dimension of a carbonation rate [mm/ $\sqrt{}$ (years)].

NOTE 2 The recommended minimum concrete cover values $c_{\min,dur}$ assume execution and curing according to EN 13670 with at least execution class 2 and curing class 2.

NOTE 3 The minimum covers can be increased by an additional safety element $\Delta c_{dar,y}$ considering special requirements (e.g. more extreme environmental conditions).

2G FC2 – CONCRETE DAMS MINIMUM REINFORCEMENT FOR CRACK CONTROL

- Minimum reinforcement area to avoid yielding of reinforcement
 - Balance between concrete force when cracking and steel force when yielding (f_{vk}) applied on the full tensile concrete area A_c
 - (i) For pure bending:

For pure tension:

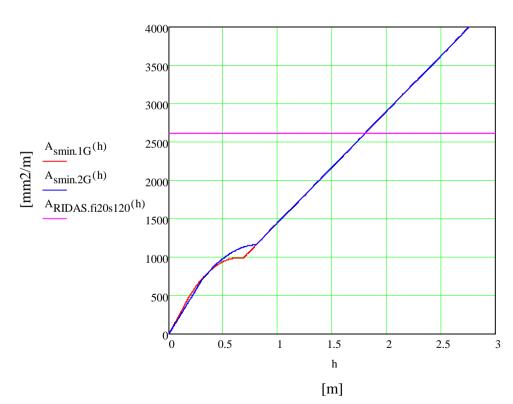
$$A_{s,\min,w1} \ge \frac{0.2k_{\rm h}f_{\rm ct,eff}A_{\rm c}}{f_{\rm yk}}$$

$$A_{s,\min,w1} = A_{s,\min,w2} \ge \frac{0.5k_h f_{ct,eff} A_c}{f_{vk}}$$

$$A_{s,\min,w1} \ge \frac{0.2k_{\rm h}f_{\rm ct,eff}A_{\rm c}}{f_{\rm yk}} \qquad A_{s,\min,w1} = A_{s,\min,w2} \ge \frac{0.5k_{\rm h}f_{\rm ct,eff}A_{\rm c}}{f_{\rm yk}} \qquad k_{\rm h} = 0.8 - 0.6(\min\{b;h\} - 0.3) \left\{ \frac{\le 0.8}{\ge 0.5} \right\}$$

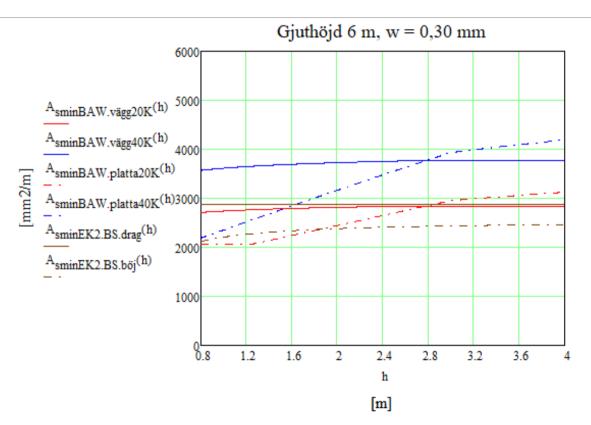
- Minimum reinforcement area for crack width control
 - Applied only on the effective concrete tensile area $A_{c.eff}$ and $\sigma_{s.lim} = f[w_{lim.calc}]$
 - For pure bending: a)

$$A_{\text{s,min,w1}} = \frac{0.8 \frac{h - h_{\text{c,eff}}}{h} f_{\text{ct,eff}} A_{\text{c,eff}}}{\sigma_{\text{s,lim}}}$$


$$A_{\rm s,min,w1} = A_{\rm s,min,w2} = \frac{f_{\rm ct,eff} A_{\rm c,eff}}{\sigma_{\rm s,lim}}$$

$$\sigma_{\rm s,lim} \leq k_{\sigma 1} f_{\rm ct,eff} \cdot \left(\frac{1}{\phi}\right) \left(-c + \sqrt{c^2 + k_{\sigma 2} \frac{E_{\rm s} \cdot w_{\rm lim,cal} \cdot \phi}{k_{\rm w} \cdot k_{\frac{1}{r}, \rm simpl} \cdot f_{\rm ct,eff}}}\right)$$

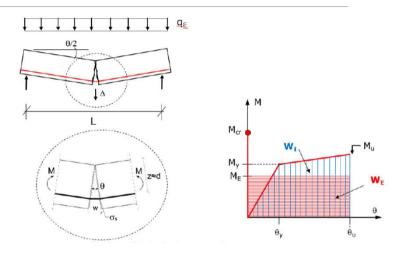
2G EC2 – CONCRETE DAMS MINIMUM REINFORCEMENT TO AVOID YIELDING


Comparison with 1G EC2 (EKS) and with RIDAS

2G EC2 – CONCRETE DAMS MINIMUM REINFORCEMENT FOR CRACK WIDTH

Comparison with RIDAS (BAW)

2G EC2 – CONCRETE DAMS MINIMUM REINFORCEMENT FOR ROBUSTNESS



- > Requirement written in a general form
 - ➤ Bending with or without axial force (ULS):

$$M_{\text{R,min}}(N_{\text{Ed,min}}) \ge M_{\text{cr}}(N_{\text{Ed,min}})$$

➤ Pure tension:

$$A_{s,min} = A_c \cdot f_{ctm}/f_{yk}$$

➤ Members statically determinate without requirement for crack control:

$$M_{\rm Rd,min}(N_{\rm Ed}) = k_{\rm dc} \cdot M_{\rm Ed}$$

$$k_{dc} = 1.3$$
 for ductility class A;

$$k_{dc} = 1.1$$
 for ductility class B;

$$k_{\rm dc} = 1.0$$
 for ductility class C.

2G EC2 - CONCRETE DAMS SHEAR DESIGN

≻Shear strength

- New design provision based a mechanical model –
 Critical Shear Crack Theory (CSCT),
- Considers the infuence of the shear span with respect to the control section (a_{cs}),
- Considers the influence of the aggregate size and aggregate interlock (d_{dq}),
- Considers the size effect in the cross section (d).

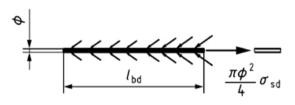
$$\tau_{\text{Rd,c}} = \frac{0.66}{\gamma_{\text{V}}} \cdot \left(100\rho_{\text{l}} \cdot f_{\text{ck}} \cdot \frac{d_{\text{dg}}}{a_{\text{v}}}\right)^{\frac{1}{3}}$$

$$a_{\text{v}} = \sqrt{\frac{a_{\text{cs}}}{4} \cdot d} \quad a_{\text{cs}} = \left| \frac{M_{\text{Ed}}}{V_{\text{Ed}}} \right| \ge d$$

2G EC2 - CONCRETE DAMS ANCHORAGE AND LAPS

> Bond strength method is replaced by a simple factor method

Table 11.1 (NDP) — Anchorage length of straight bars divided by diameter $l_{\rm bd}/\phi$


$\boldsymbol{\phi}$			A	Anchorage	length <i>l</i> _{bd} /	φ		
[mm]	f _{ck}							
	20	25	30	35	40	45	50	60
≤ 12	47	42	38	36	33	31	30	27
14	50	44	41	38	35	33	31	29
16	52	46	42	39	37	35	33	30
20	56	50	46	42	40	37	35	32
25	60	54	49	46	43	40	38	35
28	63	56	51	47	44	42	40	36
32	65	58	53	49	46	44	41	38

NOTE The values of Table 11.1 (NDP) are derived from Formula (11.3).

$$l_{\mathrm{bd}} = k_{\mathrm{lb}} \cdot k_{\mathrm{cp}} \cdot \phi \cdot \left(\frac{\sigma_{\mathrm{sd}}}{435}\right)^{n_{\sigma}} \cdot \left(\frac{25}{f_{\mathrm{ck}}}\right)^{\frac{1}{2}} \cdot \left(\frac{\phi}{20}\right)^{\frac{1}{3}} \cdot \left(\frac{1,5\phi}{c_{\mathrm{d}}}\right)^{\frac{1}{2}} \geq 10\phi$$

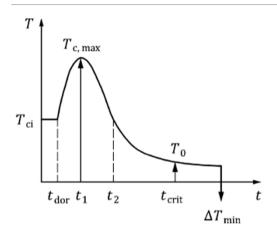
Table valid for:

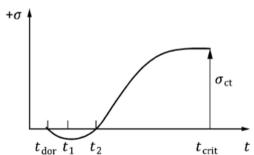
 $c_{\rm d} \ge 1.5 \phi$, $\sigma_{\rm sd} = 435 \, \rm MPa$ and good bond condition

NDPs: $k_{lb} = 50$; $n_{\sigma} = 1.5$ Good bond: $k_{cp} = 1.0$ Poor bond: $k_{cp} = 1.2$

Lap length: $I_{sd} = k_{ls} \cdot I_{bd}$ NDP: $k_{ls} = 1.2$

2G EC2 – CONCRETE DAMS WATER TIGHTNESS


- For TC1, $W_{k,lim1}$ is the width of any cracks expected to pass through the full thickness
- Based on the ratio h_D/h of the hydrostatic head h_D to the thickness of the member h, as follows:
 - for $h_D/h \le 5$: $W_{k,lim,1} = 0.20$ mm;
 - for $h_D/h \ge 35$: $W_{k \text{ lim } 1} = 0.05 \text{ mm}$.
- For structures of classes TC 2 or TC 3 so that cracks do not pass through the full width of a section, the design value of the depth of the compression zone should be at least x_{min} under the quasi-permanent combination of actions.
- x_{min} is the lesser of 50 mm or 0,2h


Table H.1 — Classification of tightness

Tightness Class	Requirements for leakage				
TC 0	Some degree of leakage acceptable, or leakage of water irrelevant.				
TC 1	Leakage to be limited to a small amount. Some surface staining or damp patches acceptable.				
TC 2	Leakage to be minimal. Appearance not to be impaired by staining.				
TC 3	No leakage is permitted.				

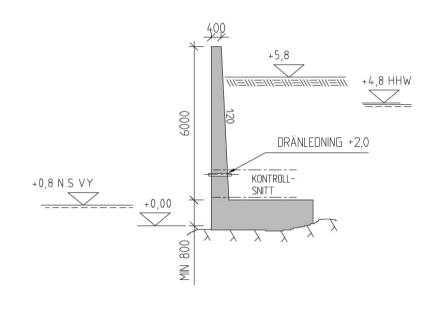
2G EC2 – CONCRETE DAMS EARLY-AGE AND LONG-TERM CRACKING DUE TO RESTRAINT

for early-age cracking:

$$R_{\rm ax}\varepsilon_{\rm free} = R_{\rm ax,1} \big(k_{\rm Temp} \alpha_{\rm cth} \big(T_{\rm c,max} - T_0 \big) + [\varepsilon_{\rm cbs}(t_{\rm crit}) - \varepsilon_{\rm cbs}(t_2)] \big)$$
 for long-term cracking:

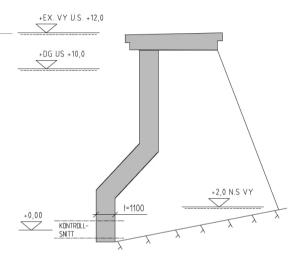
$$\begin{split} R_{\rm ax} \varepsilon_{\rm free} &= R_{\rm ax,1} \big(k_{\rm Temp} \alpha_{\rm cth} \big(T_{\rm c,max} - T_0 \big) + \big[\varepsilon_{\rm cbs}(t) - \varepsilon_{\rm cbs}(t_2) \big] \big) \\ &+ R_{\rm ax,2} \alpha_{\rm cth} \Delta T_{\rm min} + R_{\rm ax,3} \cdot \big[\varepsilon_{\rm cds}(t) - \varepsilon_{\rm cds}(t_2) \big] \end{split}$$

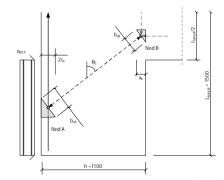
$$\varepsilon_{\rm sm} - \varepsilon_{\rm cm} = R_{\rm ax} \varepsilon_{\rm free} - k_{\rm t} \frac{f_{\rm ct,eff}}{E_{\rm cm}} \ge 0$$


$$s_{\text{r,m,cal}} = 1.5 \cdot c + \frac{k_{\text{fl}} \cdot k_{\text{b}}}{7.2} \cdot \frac{\phi}{\rho_{\rho,\text{eff}}} \le \frac{1.3}{k_w} (h - x)$$

$$w_{\mathrm{k,cal}} = k_{\mathrm{w}} \cdot k_{\mathrm{1/r}} \cdot s_{\mathrm{r,m,cal}} (\varepsilon_{\mathrm{sm}} - \varepsilon_{\mathrm{cm}})$$

CASE STUDY 1: RETAINING WATERWAY WALL


Result	Unit	EC2:2005/	EC2:2023	incr./decr.
		RIDAS/EKS		%
Vertical reinf.:	2			
As ULS	cm ² /m	9,9	9,9	0 %
As SLS (crack width)	cm ² /m	13,0	11,7	-10 %
As,min (robustness)	cm ² /m	9,7	8,3	-14 %
Horizontal reinf.:				
$As, \min \left(\sigma s = f y k \right)$	cm ² /m	10,2	11,4	12 %
As,min (limit wk)	cm ² /m	25,4	30,5	20 %
As (limit wk, restraint)			14,9	-41 %
Shear:				
VEd/VRd,c (utilization)	-	0,78	0,66	-15%
Anchorage length, Ibd	mm	618	790	28%
Lap length, Isd	mm	927	948	2%



CASE STUDY 2: FRONT PLATE IN BUTTRESS DAM

Result	Unit	EC2:2005/ RIDAS/EKS	EC2:2023	incr./decr. %
Horizontal reinf.:	_			
As ULS	cm ² /m	29,7	29,7	0%
As SLS (crack width)	cm ² /m	55,0	50,6	-8%
As,min (robustness)	cm ² /m	16,8	14,9	-11%
$As, \min \left(\sigma^{s} = f_{yk} \right)$	cm ² /m	17,6	17,6	0%
As,min (limit Wk)	cm ² /m	43,8	42,6	-3%
φ (creep coefficient)	-	1,752	1,969	12%
Shear:				
VEd/VRd,c (utilization)	-	1,16	1,23	6%
Asw (req. shear reinf.)	cm ² /m	9,47	9,47	0%
Anchorage length, Ibd	mm	772	985	28%
Lap length, Isd	mm	1158	1182	2%
Cantilever calc. with S&T:				
σc/σcmaxCCT (CCT-nod)	-	0,0834	0,0871	4%
$\sigma_{\text{C}}/\sigma_{\text{CmaxCCC}}$ (CCC-nod)	-	0,1064	0,0915	-14%
As, konsol (cantilever reinf.)	cm ² /m	4,91	4,91	0%

CONCLUSIONS

- ➤ 2G Eurocode: Basis of design impact on design of concrete dams
 - ➤ Now includes dam structures in the scope
 - ➤ New consequence class CC4 which should be used for dams
 - Reduced load coefficients for permanent and variable water pressure
- > 2G Eurocode 2: Concrete structures impact on design of concrete dams
 - ➤ Opens up for more use of climate improved concrete (SCM concrete)
 - > Small differences in ULS design compared to 1G EC2
 - > Reasonable amounts of minimum reinforcement
 - ➤ New design provisions for stress and cracks due to early-age and long-term restraints,
 - ➤ New design provisions for water tightness
 - Longer anchorage lengths (but may be adjusted with Swedish NDP)

THANK YOU!

mikael.hallgren@tyrens.se

www.tyrens.se

